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Abstract 
The knowledge about a planned system in engineering design applications is never complete. Often, a probabilistic 

quantification of the uncertainty arising from this missing information is warranted in order to efficiently incorporate our partial 
knowledge about the system and its environment into their respective models. This leads to a robust stochastic design 
framework where probabilistic models of excitation uncertainties and system modeling uncertainties can be introduced; the 
design objective is then typically related to the expected value of a system performance measure, such as reliability or expected 
life-cycle cost. For complex system models, this expected value can rarely be evaluated analytically and so it is often calculated 
using stochastic simulation techniques, which involve an estimation error and significant computational cost. An efficient 
framework, consisting of two stages, is presented here for the optimization in such stochastic design problems. The first stage 
implements a novel approach, called Stochastic Subset Optimization (SSO), for iteratively identifying a subset of the original 
design space that has high plausibility of containing the optimal design variables. The second stage adopts some other 
stochastic optimization algorithm to pinpoint the optimal design variables within that subset. The focus is primarily on the 
theory and implementation issues for SSO but also on topics related to the combination of the two different stages for overall 
enhanced efficiency. An illustrative example is presented that shows the efficiency of the proposed methodology; it considers 
the optimization of the reliability of a base-isolated structure considering future near-field ground motions.  
KEYWORDS: Optimal stochastic design, stochastic optimization, stochastic subset optimization, reliability-based design, 
common random numbers, stochastic simulation.  
 

1. Introduction 
 
In engineering design, the knowledge about a 

planned system is never complete. First, it is not known 
in advance which design will lead to the best system 
performance in terms of a specified metric; it is therefore 
desirable to optimize the performance measure over the 
space of design variables that define the set of acceptable 
designs. Second, modeling uncertainty arises because no 
mathematical model can capture perfectly the behavior of 
a real system and its environment (future excitations). In 
practice, the designer chooses a model that he or she feels 
will adequately represent the behavior of the built system 
as well as its future excitation; however, there is always 
uncertainty about which values of the model parameters 
will give the best representation of the constructed system 
and its environment, so this parameter uncertainty should 
be quantified. Furthermore, whatever model is chosen, 
there will always be an uncertain prediction error between 
the model and system responses. For an efficient 
engineering design, all uncertainties, involving future 
excitation events as well as the modeling of the system, 
must be explicitly accounted for. A probabilistic approach 
provides a rational and consistent framework for 
quantifying all of these uncertainties [1]. In this case, this 
process is often called robust stochastic system design. 

In this context, consider some controllable 
parameters that define the system design, referred to 
herein as design variables, φ 1 2[ ]

φnφ φ φ= ∈  ... Φ n⊂ φ , 
where Φ denotes the bounded admissible design space. 
Also consider a model class that is chosen to represent a 
system design and its future excitation, where each model 
in the class is specified by an nθ-dimensional vector 
θ 1 2[ ]

θnθ θ  ... θ=  lying in Θ θn⊂ , the set of possible 
values for the model parameters. Because there is 
uncertainty in which model best represents the system 
behavior, a PDF (probability density function) p(θ|φ), 
which incorporates available knowledge about the 
system, is assigned to these parameters. The objective 
function for a robust-to-uncertainties design is, then, 
expressed as: 

[ ( , )] ( , ) ( | )
Θ

E h h p d= ∫θ φ θ φ θ θ φ θ  (1) 

where Eθ[.] denotes expectation with respect to the PDF 
for θ and ( , ) : xφ θn nh →φ θ  denotes the performance 
measure of the system. In engineering applications, 
stochastic design problems are many times posed by 
adopting deterministic objective functions and using 
constraints related to stochastic integrals like (1) to 
characterize the admissible design space -such an 
approach is common, for example, in the context of 
Reliability-Based Design Optimization (RBDO) where 
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reliability constraints are adopted [2, 3]. In this study we 
focus on design problems that entail as objective function 
a stochastic integral of the form (1). The optimal 
stochastic design problem in this case takes the form: 

minimize [ ( , )]
subject to ( ) 0c

E h
≥

θ φ θ
f φ

 (2) 

where fc(φ) corresponds to a vector of constraints. Such 
optimization problems, arising in decision making under 
uncertainty, are typically referred to as stochastic 
optimization problems (e.g. [4, 5]). The constraints in 
optimization (2) can be taken into account by appropriate 
definition of the admissible design space Φ; the stochastic 
design problem is then equivalently formulated as:  

arg min [ ( , )]* E h
∈

= θ
φ

φ φ θ
Φ

 (3) 

For this optimization, the integral in (1) must be 
evaluated. For complex systems this integral can rarely be 
calculated, or even efficiently approximated, analytically 
and so it is commonly evaluated through stochastic 
simulation techniques. In this setting, an unbiased 
estimate of the expected value in (1) can be obtained 
using a finite number, N, of random samples of θ, drawn 
from p(θ|φ) : 

,
1

1ˆ [ ( , )] ( , )
N

N N i
i

E h h
N =

= ∑θ φ Ω φ θ  (4) 

where ΩN=[θ1 ... θΝ] is the sample set of the model 
parameters with vector θi denoting the sample of these 
parameters used in the ith

 simulation. This estimate of 
[ ( , )]E hθ φ θ  involves an unavoidable error eN(φ,ΩΝ) 

which is a complex function of both the sample set ΩN as 
well as the current system model configuration. The 
optimization in (3) is then approximated by:  

ˆarg min [ ( , )]*
N NE h

∈
= θ

φ
φ φ Ω

Φ
 (5) 

If the stochastic simulation procedure is a consistent one, 
then as N →∞ , ,

ˆ [ ( , )] [ ( , )]N NE h E h→θ θφ Ω φ θ  and 
* *
N →φ φ  under mild regularity conditions for the 

optimization algorithms used [5]. The existence of the 
estimation error eN(φ,ΩΝ), which may be considered as 
noise in the objective function, contrasts with classical 
deterministic optimization where it is assumed that one 
has perfect information.. 

Figure 1 illustrates the difficulties associated with 
eN(ΩΝ,φ). The curves corresponding to simulation-based 
evaluation of the objective function have non-smooth 
characteristics, a feature which makes application of 
gradient-based algorithms challenging. Also, the 
estimated optimum depends on the exact influence of the 
estimation error, which is not the same for all evaluations. 
Another source of difficulty, especially when complex 
system models are considered, is the high computational 

cost associated with the estimation in (5) since N system 
analyses must be performed for each objective function 
evaluation. Even though recent advanced stochastic 
optimization algorithms (see section 3) can efficiently 
address the first two aforementioned problems this latter 
one remains challenging for many engineering design 
applications. Specialized, approximate approaches have 
been proposed in various engineering fields for reduction 
of the computational cost (e.g. [2, 3, 6] for reliability-
based optimal design problems). These approaches may 
work satisfactorily under certain conditions, but are not 
proved to always converge to the solution of the original 
design problem. For this reason such approaches are 
avoided in this current study. Optimization problem (5) is 
directly solved so that * *

N ≈φ φ . 
 

analytical
sim N =1000
sim N =4000

φ

E θ
[(

h(
φ,
θ)

]

 
Figure 1: (a) analytical and simulation-based (sim) 

evaluation of an objective function 
 

An efficient framework, consisting of two stages, is 
discussed in the following sections for a computational 
efficient solution to this optimization. The first stage 
implements a novel approach, called Stochastic Subset 
Optimization (SSO) [7, 8], for efficiently exploring the 
global sensitivity of the objective function to the design 
variables and for iteratively converging to a subset of the 
original design space that has high plausibility of 
containing the optimal design variables. The second stage 
adopts some appropriate stochastic optimization 
algorithm to pinpoint the optimal design variables within 
the set identified in the first stage. The focus is primarily 
on the theory and implementation issues for SSO but also 
on topics related to the combination of the two different 
stages for enhanced overall efficiency. 

2. Stochastic Subset Optimization 
Stochastic Subset Optimization (SSO) was initially 

suggested for reliability-based optimization problems (for 
a proper definition of such problems see Section 5.1 later 
on) in [9] and has been recently [8] extended to address 
general stochastic design problems, such as the one in (2). 
The basic features of the algorithm are summarized next. 
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2.1 Augmented problem and subset analysis 
Consider, initially, the modified positive function, 

( , ) : xφ θn n
sh +→φ θ  defined as 

,
( , ) ( , )   where   min ( , )sh h s s h= − <

φ θ
φ θ φ θ φ θ  (6) 

and note that Eθ[hs(φ,θ)]= Eθ[h(φ,θ)]-s. Since the two 
expected values differ only by a constant, optimization of 
the expected value of h(.) is equivalent, in terms of the 
optimal design choice, to optimization for the expected 
value for hs(.). In the SSO setting we focus on the latter 
optimization.  

The basic idea in SSO is the formulation of an 
augmented problem, a general concept initially discussed 
in [10] for reliability-based design problems,  where the 
design variables are artificially considered as uncertain 
with distribution p(φ) over the design space Φ. In the 
setting of this augmented stochastic design problem, 
define the auxiliary PDF: 

,

( , ) ( , )
( , ) ( , ) ( , )

[ ( , )]
s

s
s

h p
π h p

E h
= ∝

φ θ

φ θ φ θ
φ θ φ θ φ θ

φ θ
 (7) 

where p(φ,θ)=p(φ)p(θ|φ). The normalizing constant in 
the denominator is defined as: 

, [ ( , )] ( , ) ( , )s sΦ Θ
E h h p d d= ∫ ∫φ θ φ θ φ θ φ θ θ φ  (8) 

and corresponds to the expected value in the augmented 
uncertain space. This expected value is not explicitly 
needed, but it can be obtained though stochastic 
simulation, which leads to an expression similar to (4) but 
with the pair [φ, θ] defining the uncertain parameters. 
The transformation of the performance measure in (6) 
may be necessary to ensure that π(φ,θ)≥ 0. For many 
stochastic design problems h(φ,θ)≥ 0 and the 
transformation in (6) is unnecessary. 

In terms of the auxiliary PDF, the objective function  
Eθ[hs(φ,θ)]  can be expressed as:  

,
( )[ ( , )] [ ( , )]
( )s s
πE h E h
p

=θ φ θ
φφ θ φ θ
φ

 (9) 

where the marginal PDF π(φ) is equal to: 

( ) ( , )
Θ

π π d= ∫φ φ θ θ  (10) 

Define, now: 

,

[ ( , )] ( )( )
[ ( , )] ( )

s

s

E h πJ
E h p

= =θ

φ θ

φ θ φφ
φ θ φ

 (11) 

Since Eφ,θ[hs(φ,θ)] can be viewed simply as a normalizing 
constant, minimization of Eθ[hs(φ,θ)] is equivalent to the 
minimization of J(φ). For this purpose the marginal PDF 
π(φ) in the numerator of J(φ) must be evaluated. Samples 
of this PDF can be obtained through stochastic simulation 
techniques [11]; for example, by using direct Monte Carlo 

simulation (MCS) or Markov Chain Monte Carlo 
(MCMC) sampling. Appendix A provides a brief 
description of two such algorithms. These algorithms will 
give sample pairs [φ,θ] that are distributed according to 
the joint distribution π(φ,θ). Their φ component 
corresponds to samples from the marginal distribution 
π(φ). Analytical approximations of π(φ) based on these 
samples, using for example kernel density methods or the 
maximum entropy method, can be problematic for 
complicated problems, such as when nφ is large or the 
sensitivity for some design variables is complex [7]. In 
the SSO framework, such approximation of π(φ) is 
avoided. The sensitivity analysis is performed by looking 
at the average value (or equivalently volume density) of 
J(φ)  over any subset of the design space I⊂Φ, denoted 
by H(I):  

( ) [ ( , )]
( )

sI I

I I

J d E h d
H I

V V
∝∫ ∫ θφ φ φ θ φ

 (12) 

This term is also proportional, ignoring normalization 
constants, to the average value of the objective function 
in set I (which can be also considered [8] as the 
“normalized average set content”). Το simplify the 
evaluation of H(I), a uniform distribution is chosen for 
p(φ). Note that p(φ) does not reflect the uncertainty in φ 
but is simply a device for formulating the augmented 
problem and thus can be selected according to 
convenience. Finally, H(I) and an estimate of it based on 
the samples from π(φ) obtained as described previously, 
are given, respectively, by:  

( ) ( )  Φ
I

I

VH I π d  
V

= ∫ φ φ  (13) 

/ˆ ( )
/

I I

Φ Φ

N VH I
N V

=  (14) 

where NI and NΦ denote the number of samples from 
π(φ) belonging to the sets I and Φ, respectively, and VΦ 
is the volume of the design space Φ. The estimate for 
H(I) is equal to the ratio of the volume density of samples 
from π(φ) in sets I and Φ. The coefficient of variation 
(c.o.v.) for this estimate depends on the simulation 
technique used for obtaining the samples from π(φ). For a 
broad class of sampling algorithms this c.o.v. may be 
expressed as: 

1 /1 ( )ˆc.o.v. ( )   , 
( ) /

( ) ( ) /

I Φ

I Φ

I ΦI

N NP IH I
Ν P I Ν N N

P I π d N N

−− ∈
= ≈

⋅ ∈ ⋅

∈ ≈∫

φ
φ

φ φ φ
 (15) 

where N=NΦ/(1+γ), γ≥ 0, is the effective number of 
independent samples. If direct Monte Carlo techniques 
are used then γ=0, but if Markov Chain Monte Carlo 
(MCMC) sampling is selected then γ>0 because of the 
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correlation of the generated samples. Ultimately, the 
value of γ depends on the characteristics of the algorithm 
used.  

For the uniform PDF for p(φ), note that H(Φ)=1 and 
H(I) is equal to the ratio:  

[ ( , )]
( )

[ ( , )]
s II

s ΦΦ

E h d V
H I

E h d V
= ∫
∫

θ

θ

φ θ φ /

φ θ φ /
 (16) 

where the integrals in the numerator and denominator 
correspond to the average value of the objective function 
in sets I and Φ, respectively (average set contents). Thus 
H(I) expresses the average relative sensitivity of 
Eθ[hs(φ,θ)] to φ within the set I⊂Φ: greater sensitivity, 
i.e. bigger contrast in the average value (i.e. volume 
density) of the objective function, corresponds to smaller 
values for H(I). 
 

2.2 Subset optimization  
Consider a set of admissible subsets A in Φ that have 

some predetermined shape and some size constraint, for 
example related to the set volume, and define the 
deterministic subset optimization: 

* arg min ( )
I A

I H I
∈

=  (17) 

Based on the estimate in (13), this optimization is 
approximately equal to the following stochastic subset 
optimization: 

ˆ ˆarg min ( ) arg min I

I A I A
I

NI H I
V∈ ∈

= =  (18) 

i.e., to identification of the set I∈A that contains the 
smallest volume density NI/VI of samples.  

Optimization (17) identifies the set that gives the 
smallest average value of J(φ) (or equivalently 
Eθ[hs(φ,θ)]) within the class of admissible subsets A. If 
set A is properly chosen, for example if its shape is 
“close” to the contours of Eθ[hs(φ,θ)]  in the vicinity of 

*φ , then *I∈*φ  for the optimization in (17); this is true 
even if the constraints of the design problem are active so 
that *φ  is an active optimum rather than an interior 
optimum in Φ. This whole argument is not necessarily 
true for the optimization in (18) because only estimates of 
H(I ) are used. Î  is simply the set, within the admissible 
subsets A, that has the largest likelihood, in terms of the 
information available through the obtained samples, of 
including *φ . Τhis likelihood defines the quality of the 
identification and ultimately depends [8] on H(I); taking 
into account the fact that the average value of Eθ[hs(φ,θ)] 
in the neighborhood of the optimal solution is the smallest 
in Φ, it is evident (see equation (16)) that smaller values 
of ˆ( )H I  correspond to greater plausibility for the set Î  
to include φ*. Since only estimates of ˆ( )H I  are available 
in the stochastic identification, the quality depends, 

ultimately, on both: (a) the estimate ˆ ˆ( )H I  and (b) its 
coefficient of variation (defining the accuracy of that 
estimate). Smaller values for these parameters correspond 
to better quality of identification. Both of them should be 
used as a measure of this quality.  

Note that the computational cost for obtaining the 
samples needed for optimization (18) is comparable to the 
cost required for a single evaluation of the objective 
function in (4), depending on how many samples are 
simulated and the details of the algorithm used.   

 
2.3 Iterative approach 
The relative size of the admissible subsets I define (a) 

the resolution of φ* and (b) the accuracy information 
about ˆ ( )H I  that is extracted from the samples from π(φ). 
Selecting smaller size for the admissible sets leads to 
better resolution for φ*.  At the same time, though, this 
selection leads to smaller values for the ratio NI /NΦ (since 
smaller number of samples are included in smaller sets) 
and thus it increases the c.o.v. (reduces accuracy) of the 
estimation, as seen from (15). In order to maintain the 
same quality for the estimate, the effective number of 
independent samples must be increased, which means that 
more simulations must be performed. Since we are 
interested in subsets in Φ with small average value, the 
required number of simulations to gather accurate 
information for subsets with small size is large, i.e. small 
percentage of the simulated samples fall in these subsets. 
To account for this characteristic and to increase the 
efficiency of the identification process, an iterative 
approach can be adopted. At iteration k, additional 
samples in 1k̂I −  (where 0̂I Φ= ) that are distributed 
according to π(φ) are obtained. A region 1

ˆ ˆ
k kI I −⊂  for the 

optimal design parameters is then identified as above. The 
quality of the identification is improved by applying such 
an iterative scheme, since the ratio of the samples in 1k̂I −  
to the one in k̂I  is larger than the equivalent ratio when 
comparing k̂I  and the original design space Φ. The 
samples [φ,θ] available from the previous iteration, 
whose φ component lies inside set 1k̂I − , can be exploited 
for improving the efficiency of the sampling process. In 
terms of the algorithms described in Appendix A this may 
be established for example by (a) forming better proposal 
PDFs or (b) using the samples already available as seeds 
for MCMC simulation (since these samples already 
follow the target distribution).   

This iterative approach leads to a favorable feature 
for the computational cost of SSO with respect to the 
dimension of the search space (number of design 
variables, nφ). For a specific reduction δk=VIk/VIk-1 of the 
size (volume) of the search space in some step of the set 
identification, the corresponding average size reduction 
per design variable is φn

kδ . This means that if the 
identification was performed in one step, the logarithmic 
average size reduction per variable would be inversely 
proportional to the dimension of the search space nφ 
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(assuming δk remains the same). In the suggested iterative 
approach though, in niter iterations the average size 
reduction per design variables is: 

( ) ( ) /

1
iter iter φφφ iter

n n nnn n
k mean meank
δ δ δ

=
= =∏  (19) 

where  

1
iteriter

nn
mean kk
δ δ

=
= ∏  (20) 

is the geometric mean of the volume reductions over all 
of the iterations (note that if δk=δ, then δmean=δ). Thus, for 
the same average total size reduction over all design 
variables (left hand side of equation (19)), the number of 
required iterations is proportional to the dimension of the 
design space (look at the exponent in right hand side of 
equation (19)), assuming that the mean reduction of the 
volume over all iterations, δmean, is comparable. This 
argument shows that the efficiency of SSO decreases 
linearly with the dimension of the design space, so SSO 
should be considered appropriate for problems that 
involve a large number of design variables.  

  
2.4 Selection of admissible subsets  
Proper selection of the geometrical shape and size of 

the admissible sets is important for the efficiency of SSO. 
The geometrical shape should be chosen so that the 
challenging, non-smooth optimization (18) can be 
efficiently solved while the sensitivity of the objective 
function to each design variable is fully explored. For 
example, a hyper-rectangle or a hyper-ellipse can be a 
appropriate choices for shape of admissible subsets, 
depending also on the shape of the design space Φ. For 
problems involving complex design spaces, special 
attention is needed for the proper selection of the 
geometrical shape for I. In such cases, re-definition of the 
admissible design space in (3) might be beneficial; this 
can be established by including some of the complex 
constraints of (2) as part of the objective function (as 
penalty terms). Note, additionally, that the difference in 
size (volume) between Φ and the largest possible subset 
I Φ⊂  should not be large. If this property does not hold, 
then the size reduction in the first iteration of SSO will 
necessarily have to be at least as big as this volume 
difference. This feature might reduce the quality of the 
SSO identification in the first iteration. This problem may 
be circumvented by appropriate adjustment of the design 
space, Φ, based on the desired shapes for the class of 
admissible subsets. For example, a superset Φsup that has 
shape similar to the one of the admissible subsets, and 
circumscribes the desired design set Φ can be selected as 
initial search space for the optimal system configuration. 

The size of admissible subsets, now, is related to the 
quality of identification as discussed earlier. Selection of 
this size can be determined, for example, by incorporating 

a constraint for either (i) the volume ratio δ=VΙ/VΦ or (ii) 
the number of samples ratio ρ=NI /NΦ. The first choice 
cannot be directly related to any of the measures of 
quality of identification; thus proper selection of δ is not 
straightforward, though our experience indicates that δ 
close to 0.25 is, in general, an appropriate option. The 
second choice allows for directly controlling the 
coefficient of variation (see (15)) and thus one of the 
parameters influencing the quality of identification. This 
is the selection that is discussed in more detail here, that 
is, Aρ={Ι⊂Φ: ρ=ΝΙ/ΝΦ}. 

Τhe volume (size) of the admissible subsets, δk,  in 
this scheme is adaptively chosen so that the ratio of 
samples in the identified set is equals to ρ. The choice of 
the value for ρ affects the efficiency of the identification. 
If ρ is large, fewer number of samples is required for the 
same level of accuracy (c.o.v. in (15)). However, a large 
value of ρ means that the size of the identified subsets 
will decreases slowly (larger size sets are identified), 
requiring more steps to converge to the optimal solution. 
The choice of the constraint ρ is a trade-off between the 
number of samples required in each step and the number 
of steps required to converge to the optimal design 
choice. In the applications we have investigated so far it 
was found that choosing ρ=0.1-0.2 yields good efficiency. 
An adaptive scheme can also be applied: smaller values 
of ρ may be selected in the first iterations of SSO when 
the sensitivity of the design problem is large and so the 
values of ˆ ˆ( )H I  small (see discussion later on too). As the 
algorithm converges to the optimal design configuration, 

ˆ ˆ( )H I  increases and larger values of ρ can be chosen to 
decrease the c.o.v. of ˆ ˆ( )H I  and thus improve the 
identification quality.  

For problems with multiple local minima of the 
objective function, the subset identified by SSO does not 
necessarily include the global optimum, even in the 
context of the deterministic subset optimization (17). That 
subset will have the smallest estimated average value for 
the objective function within the selected class of 
admissible subsets; this does not guarantee automatically 
that it will include the global optimum. The selection of 
the geometrical shape of the admissible subsets and, more 
importantly, for ρ may determine whether that subset 
includes the global optimal solution or only a local one. 
This topic deserves a more detailed investigation which is 
left to future work.  

  
2.5 Identification of optimal subsets 
Another important issue for the efficiency of SSO is 

the identification of the optimal sets within the class of 
admissible subsets selected, i.e., optimization (18). A 
fundamental remark regarding this optimization is that the 
position in the search space of a set I∈A and the number 
of sample points in it is non-continuous. Thus, only 
methods appropriate for non-smooth optimization 
problems, such as genetic algorithms or direct search 
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methods (see [12] for more details), should be applied for 
this optimization. The choice of mathematical description 
of the subsets I is important for the efficiency of these 
algorithms. Reference [13] provides a detailed discussion 
of normalization processes that can increase this 
efficiency for admissible subsets that are hyper-ellipses or 
hyper-rectangles. Note, additionally, that the evaluation 
of the objective function and the constraint for this 
optimization involve small computational effort; they 
simply consist of counting the number of samples within 
the subset, calculating the volume of the set, and checking 
that Ι⊂Φ. Thus the optimizer can explore many 
candidate subsets during the solution of the problem (18) 
at a small computational cost. In our applications, 
exploration of 105 candidate solutions takes on the 
average 10-20 sec. This cost is orders of magnitude 
smaller than the cost of the stochastic simulation needed 
for generating the samples from π(φ) for problems 
involving complex system models. Thus the 
computational efficiency of SSO is primarily determined 
by the efficiency of the stochastic simulation stage, not 
optimization (18).  

The optimization (18) can therefore be efficiently 
solved if an appropriate algorithm is chosen and, 
additionally, the admissible subsets are appropriately 
mathematically described. Because of the significance of 
the optimization in the accuracy of SSO, special attention 
is warranted to guarantee that the identification of the 
optimal subsets is robust. A simpler geometrical 
characterization of the admissible subsets should be 
preferred when there is doubt about the reliability of the 
optimization process if more complex ones were chosen.     

 
2.6 SSO algorithm 
The SSO algorithm is summarized as follows (Figure 

2 illustrates some important steps): 
Initialization: Define the bounded design space Φ, 

and the desired geometrical shape for the subsets I. 
Decide on the desired number of samples N and on the 
value for the constraint ρ. 

Step k: Use some sampling procedure, such as MC 
simulation for the 1st step and MCMC simulation for 
subsequent steps, in order to simulate N samples (or 
effective samples) from π(φ) inside the subset Îk-1. 
Identify subset Îk as: 

{ }
,

, 1

ˆ arg min /    

ˆ : /  
ρ k

k I II A

ρ k k I

I N V

A I I ρ N N

∈

−

=

= ⊂ =
 (21) 

Keep only the 
k̂IN  samples that belong to the subset Îk 

(exploit these samples in the next step). 
  Stopping criteria: At each step, estimate ratio: 

1

1

ˆ ˆ

ˆ ˆ

ˆ ˆ( ) k k

k k

I I
k

I I

N V
H I

N V
−

−

=  (22) 

and its coefficient of variation according to the simulation 
algorithm used.  Based on these two quantities and the 
desired quality of the identification (see Section 4.1), 
decide on whether to (a) stop (or even increase N to 
obtain better accuracy information about ˆ ˆ( )kH I ) or (b) 
proceed to step k+1.   
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(b) Identification of set Î1; Ĥ(Î1)=0.55
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Figure 2: Illustration of SSO procedure (the X in these 
plots corresponds to actual optimal solution). 

 
Figure 2 also demonstrates the dependence of the 

quality of the identification on ˆ ˆ( )kH I  for a two-
dimensional example. This ratio expresses the difference 
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in volume density of the samples inside and outside the 
identified set k̂I . In the first iteration, this difference is 
clearly visible. As SSO evolves and converges to subsets 
with smaller sensitivity to the objective function, the 
difference becomes smaller and by the last iteration 
(Figure 2(f)), it is difficult to visually discriminate which 
region in the set has smaller volume density of failed 
samples. This corresponds to a decrease in the quality of 
the identification. 

The SSO algorithm described in this section, will 
adaptively converge to a relatively small sub-region for 
the optimal design variables φ* within the original design 
space. This is true even if the constraints of problem (2) 
are active for the optimal design point (so it is not an 
interior point of the feasible region); in this case the sub-
region will include the active optimum φ*, a characteristic 
that has been verified in the example considered in [9]. 
The size, now, of the sub-region identified by SSO 
depends on the sensitivity of the objective function 
around the optimal point. If that sensitivity is large then 
SSO will ultimately converge to a “small” set ŝsoI , 
satisfying at the same time the accuracy requirements that 
make it highly likely that φ* is in ŝsoI . The center point of 
this set, denoted herein as φSSO, gives the estimate for the 
optimal design variables. Additionally SSO gives 
information about the local behavior of the objective 
function. As long as the shape of the admissible subsets is 
close to the contours of the objective function near the 
optimal design point, the subset identified in the last stage 
of SSO provides a good estimate for these contours. For 
improving the accuracy of this estimate, it might be 
desirable to increase the number of samples N, in the last 
iteration of SSO, in order to obtain more information for 
π(φ).  Also, selection of the shape of admissible subsets 
as hyper-ellipses should be more appropriate for this 
purpose since the contours of the objective function are 
expected to fit better to hyper-elliptical shapes near the 
optimal design point. 

In cases, though, that the sensitivity of the objective 
function around the optimal point is not large enough, 
convergence to a small subset might be problematic and 
will require increasing the number of samples in order to 
satisfy the requirement for the quality of identification. 
Another important issue related to the identification in 
such cases is that there is no measure of the quality of the 
identified solution, i.e. how close φSSO  is to φ*

, that can 
be directly established through the SSO results. If the 
identification is performed multiple times, the c.o.v. of 
{ ,

ˆ [ ( , )]SSO iE hθ φ θ } could be considered a good candidate 
for characterizing this quality. This might not be always a 
good measure though. For example, if the choice for 
admissible subsets is inappropriate for the problem 
considered, it could be the case that consistent results are 
obtained for φSSO (small c.o.v.) that are far from the 
optimal design choice φ*. Also, this approach involves 
higher computational cost because of the need to perform 

the identification multiple times. For such cases, it could 
be more computationally efficient (instead of increasing 
N in SSO and performing the identification multiple 
times) and more accurate (in terms of identifying the true 
optimum), to combine SSO with some other optimization 
algorithm for pinpointing φ*. A discussion of topics 
related to such algorithms is presented next. 

3. Stochastic optimization 
We go back to the original formulation of the 

objective function in (1). In principle, though, the 
techniques discussed here are applicable to the case that 
the performance measure h(θ,φ) is replaced by the 
positive function hs(θ,φ) used in the SSO setting (given 
by (6)). 

 3.1 Common random numbers and exterior 
sampling 

The efficiency of stochastic optimizations such as (5) 
can be enhanced by the reduction of the absolute and/or 
relative importance of the estimation error eN(φ,ΩΝ). The 
absolute importance may be reduced by obtaining more 
accurate estimates of the objective function, i.e. by 
reducing the error eN(φ,ΩΝ) and thus the variance of the 
estimates. This can be established in various ways, for 
example by using importance sampling (see Section 4.2) 
or by selecting a larger sample size N in (4),  but these 
typically involve extra computational effort. It is, thus, 
more efficient to seek a reduction in the relative 
importance of the estimation error. This means reducing 
the variance of the difference of estimates 

1 1
,

ˆ [ ( , )]N NE hθ φ Ω  and 2 2
,

ˆ [ ( , )]N NE hθ φ Ω  that correspond to 
two different design choices φ1 and φ2. This variance can 
be decomposed as: 

( )
( ) ( )

( )

1 1 2 2
, ,

1 1 2 2
, ,

1 1 2 2
, ,

ˆ ˆ[ ( , )] [ ( , )]

ˆ ˆ      [ ( , )] var [ ( , )]

ˆ ˆ      2cov [ ( , )], [ ( , )]

N N N N

N N N N

N N N N

var E h E h

var E h E h

E h E h

− =

+

−

θ θ

θ θ

θ θ

φ Ω φ Ω

φ Ω φ Ω

φ Ω φ Ω

  (23) 

Deliberately introducing dependence in the evaluation 
of 1 1

,
ˆ [ ( , )]N NE hθ φ Ω  and 2 2

,
ˆ [ ( , )]N NE hθ φ Ω , increases the 

covariance (i.e. increases their correlation) and thus 
decreases their variability (the variance on the left).  This 
decrease in the variance improves the efficiency of the 
comparison of the two estimates; it may be equivalently 
considered as creating a consistent estimation error. This 
task can be achieved by adopting common random 
numbers (CRN), i.e. 2 1

N N=Ω Ω , in the simulations 
generating the two different estimates.  Figure 3 shows 
the influence of such a selection: the curves that 
correspond to CRN are characterized by consistent 
estimation error and are smoother.  Continuity and 
monotonicity of the output with respect to the random 
number input are key issues for improving the efficiency 
of stochastic comparisons when using common random 
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numbers [14]. If h(φ,θ) is sufficiently smooth then these 
two aforementioned requirements can be typically 
guaranteed, as long as the design choices compared are 
not too far apart in the design variable space, i.e. the 
systems compared are not too different so that the model 
parameter values have a similar effect on the different 
system outputs. In such cases it is expected that use of 
CRN will be advantageous. Note that if the systems 
compared are significantly different, i.e. correspond to φ 
that are not close, then CRN do not necessarily guarantee 
efficiency. This might occur, for examples, when the 
regions of Θ that contribute most to the integral of the 
expected value for the two systems are drastically 
different and the sample sets 2 1

N N=Ω Ω  selected do not 
efficiently represent both of these regions. This feature is 
also indicated in curve (iv) in Figure 3; the estimation 
error is not consistent along the whole range of φ for the 
CRN curves (but for local comparisons it appears to be 
consistent). 

(i) analytical
(ii) sim N=4000
(iii) CRN sim N=4000
(iv) CRN sim N=1000

φ

E θ
[(

h(
φ,
θ)

]

 
Figure 3: Illustration of some points in CRN-based 

evaluation of an objective function 
 
A notion closely related to CRN is the exterior 

sampling approximation (ESA) for stochastic design 
optimizations. ESA adopts the same stream of random 
numbers throughout all iterations in the optimization 
process, thus transforming problem (5) into a 
deterministic system design problem, which can be 
solved by any appropriate routine. Usually ESA is 
implemented by selecting N “large enough” to give good 
quality estimates for the objective function and thus more 
accurate solutions to the optimization problem (see [5] for 
more details). The quality of the solution obtained 
through ESA is commonly assessed by solving the 
optimization problem multiple times, for different 
independent random sample streams. Even though the 
computational cost for the ESA deterministic 
optimization is typically smaller than that of the original 
stochastic search problem, the overall efficiency may be 

worse because of the requirement to perform the 
optimization multiple times. 

 
3.2 Appropriate optimization algorithms 
Both gradient-based and gradient-free algorithms can 

be used in conjunction with CRN or ESA and can be 
appropriate for stochastic optimizations.  

Gradient-based algorithms: these use derivative 
information to iterate in the direction of steepest descent 
for the objective function. Only local designs are 
compared in each iteration, which makes the 
implementation of CRN efficient and allows for use of 
stochastic approximations [15] which can significantly 
improve the computational efficiency of stochastic search 
applications [4]. The latter approximation is performed by 
establishing (through proper recursive formulas) an 
equivalent averaging across the iterations of the 
optimization algorithm, instead of getting higher accuracy 
estimates for the objective function at each iteration, that 
is averaging over one single iteration. In simple design 
problems the performance measure h(φ,θ) may be such 
that the gradient of the objective function with respect to 
φ can be obtained through a single stochastic simulation 
analysis [4, 16]. In many cases though, the models used 
are generally complex, and it is difficult, or impractical, 
to develop an analytical relationship between the design 
variables and the objective function. Finite difference 
numerical differentiation is often the only possibility for 
obtaining information about the gradient vector but this 
involves computational cost which increases linearly with 
the dimension of the design parameters. Simultaneous-
perturbation stochastic approximation (SPSA) [4, 17] is 
an efficient alternative search method. It is based on the 
observation that one properly chosen simultaneous 
random perturbation in all components of φ provides as 
much information for optimization purposes in the long 
run as a full set of one at a time changes of each 
component. Thus, it uses only two evaluations of the 
objective function, in a direction randomly chosen at each 
iteration, to form an approximation to the gradient vector.  

Gradient-free algorithms: these include, for example, 
evolutionary algorithms, direct search and objective 
function approximation methods and are based on 
comparisons of design choices that are distributed in large 
regions of the design space. They require information 
only for the objective function which makes them highly 
appropriate for stochastic optimizations [18, 19] because 
they avoid the difficulty of obtaining derivative 
information. They involve, though, significant 
computational effort if the dimension of the design 
variable space is high. Use of CRN in these algorithms 
may only improve the efficiency of the comparisons in 
special cases; for example, if the size (volume) of the 
design space is “relatively small” and thus the design 
variables being compared are always close to each other. 
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More detailed discussion of algorithms for stochastic 
optimization can be found in [4] and [5]. Only SPSA 
using CRN is briefly summarized here. 

 
3.3 Simultaneous perturbation stochastic 

approximation using common random 
numbers 

The implementation of SPSA takes the iterative form: 

( )1 ,k k k k k Nα+ = −φ φ g φ Ω  (24) 

where φ1 Φ∈ is the chosen point to initiate the algorithm 
and the jth component for the CRN simultaneous 
perturbation approximation to the gradient vector in the 
kth iteration,  gk(ΩΝ,k,φ), is given by: 

( ) ( ), , , ,
,

,

ˆ ˆ, ,
2

N k k k N k N k k k N k
k j

k κ j

E c E c  
g

c Δ
+ − −

= θ θφ Δ Ω φ ΩΔ
 (25) 

where φn
κ ∈Δ  is a vector of mutually independent 

random variables that defines the random direction of 
simultaneous perturbation for φk and that satisfies the 
statistical properties given in [4]. A symmetric Bernoulli 

1±  distribution is typically chosen for the components of 
κΔ . The selection for the sequences {ck} and {αk} is 

discussed in detail in [17]. A choice that guarantees 
asymptotic convergence to *φ  is αk=α/(k+w)β and 
ck=c1/kζ, where 4ζ-β>0, 2β-2ζ>1, with w,ζ>0 and 
0 1β< ≤ . This selection leads to a rate of convergence 
that asymptotically approaches /2βk − when CRN is used 
[17]. The asymptotically optimal choice for β is, thus, 1. 
In applications where efficiency using a small number of 
iterations is sought after, use of smaller values for β are 
suggested in [4]. For complex structural design 
optimizations, where the computational cost for each 
iteration of the algorithm is high, the latter suggestion 
should be adopted.  

Regarding the rest of the parameters for the 
sequences {ck} and {αk}: w is typically set to 10% of the 
number of iterations selected for the algorithm and the 
initial step c1 is chosen “close” to the standard deviation 
of the measurement error eN(ΩΝ,φ1). The value of α can 
be determined based on the estimate of g1 and the desired 
step size for the first iteration. Some initial trials are 
generally needed in order to make a good selection for α, 
especially when little prior insight is available for the 
sensitivity of the objective function to each of the design 
variables. Convergence of the iterative process is judged 
based on the value 1k k+ −φ φ in the last few steps, for an 
appropriate selected vector norm. Blocking rules can also 
be applied in order to avoid potential divergence of the 
algorithm, especially in the first iterations (see [4] for 
more details). 

4. An efficient framework for stochastic 
design using stochastic simulation 

 
4.1 Framework Outline 
As already mentioned, a two-stage framework for 

stochastic system design may be established by 
combining the algorithms presented in the previous two 
sections. In the first stage, SSO is implemented in order 
to explore the sensitivity of the objective function and 
adaptively identify a subset ISSO⊂Φ containing the 
optimal design variables. In the second stage, any 
appropriate stochastic optimization algorithm is 
implemented in order to pinpoint the optimal solution 
within ISSO. The specific algorithm selected for the second 
stage determines the level of quality that should be 
established in the SSO identification. If a method is 
chosen that is restricted to search only within ISSO 
(typically characteristic of gradient-free methods), then 
better quality is needed. The iterations of SSO should 
stop at a larger size set, and establish greater plausibility 
that the identified set includes the optimal design point. 
If, on the other hand, a method is selected that allows for 
convergence to points outside the identified set, lower 
quality may be acceptable in the identification. Our 
experience indicates that a value around 0.8 for ˆ ˆ( )kH I  
with a c.o.v. of 4% for that estimate, indicates high 
certainty that k̂I  includes the optimal solution. Of course, 
this depends on the characteristics of the problem too and 
particularly on the selection of the shape of admissible 
subsets, but this guideline has proved to be robust in the 
applications we have considered so far.   

The efficiency of the stochastic optimization 
considered in the second stage is influenced by (a) the 
size of the design space Φ defined by its volume VΦ, and, 
depending on the characteristics of the algorithm chosen, 
by (b) the initial point φ1 at which the algorithm is 
initiated, and (c) the knowledge about the local behavior 
of the objective function in Φ. The SSO stage gives 
valuable insight for all these topics and can, therefore, 
contribute to increasing the efficiency of convergence to 
the optimal solution φ* (as has been illustrated in [7, 8]).  
The set ISSO has smaller size (volume) than the original 
design space Φ. Also, it is established that the sensitivity 
of the objective function with respect to all components 
of φ is small and, depending on the selection of the shape 
of admissible subsets, the correlation between the design 
variables is identified (see also discussion in the example 
later). This allows for efficient normalization of the 
design space (in selecting step sizes) or choice of 
approximating functions (for example, for objective 
function approximation methods).  

In particular for tuning the SPSA algorithm presented 
in Section 3.2 using information from SSO, the following 
guidelines can be applied: φ1 should be selected as the 
center of the set ISSO and parameter a chosen so that the 
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initial step for each component of φ is smaller than a 
certain fraction (chosen as 1/10) of the respective size of 
ΙSSO, based on the estimate for g1. This estimate should be 
averaged over ng (chosen as 6) evaluations because of its 
importance in the efficiency of the algorithm. Also, no 
movement in any direction should be allowed that is 
greater than a quarter of the size of the respective 
dimension of ISSO (blocking rule). 

The information from the SSO stage can also be 
exploited in order to reduce the variance of the estimate 

,
ˆ [ ( , )]N NE hθ φ Ω  by using importance sampling. This 

choice is discussed next. 
 

4.2 Importance sampling 
Importance sampling (IS) [11] is an efficient variance 

reduction technique. It is based on choosing an 
importance sampling density pis(θ|φ), to generate samples 
in those regions of Θ that contribute more to the integral 
of [ ( , )]E hθ φ θ . An estimate for the integral in (1) is given 
in this case by: 

,
1

1ˆ [ ( , )] ( , ) ( | )
N

N N i i
i

E h h R
N =

= ∑θ φ Ω φ θ θ φ  (26) 

where the samples θi are simulated according to pis(θ|φ) 
and R(θi|φ)=p(θi|φ)/pis(θi|φ) is the importance sampling 
quotient. The main problem is how to choose a good IS 
density, i.e. a density that reduces the variability of the 
estimate in (26). The optimal density is simply the PDF 
that is proportional to the absolute value of the integrand 
of (1) [11]:  

,

( , ) ( | )
( | ) ( , ) ( | )

[ ( , ) ]is opt

h p
p h p

E h
= ∝

θ

φ θ θ φ
θ φ φ θ θ φ

φ θ
 (27) 

Samples for θ that are distributed proportional to 
hs(φ,θ)p(θ|φ) when φ∈ΙSSO are available from the last 
iteration of the SSO stage. They simply correspond to the 
θ component of the available sample pairs [φ,θ]. Re-
sampling can be performed within these samples, using 
weighting factors |h(φi,θi)|/hs(φi,θi) for each sample, in 
order to simulate samples from |h(φi,θi)|p(θ|φ) when 
φ∈ΙSSO. The efficiency of this re-sampling procedure 
depends on how different hs(φi,θi) and h(φi,θi)  are. In 
most cases the difference will not be significant, or even 
zero, and good efficiency can be established. 
Alternatively, hs(φ,θ) can be used as performance 
measure in the second stage of the optimization; this 
choice would be inappropriate if s was negative because it 
makes the loss function less sensitive to the uncertain 
parameters θ, thus possible reducing the efficiency of IS.  

The samples simulated from h(φ,θ)p(θ|φ) can be 
finally used to create an importance sampling density 
pis(θ) to use for pis(θ|φ), since the set ISSO is relatively 
small. This last feature is important; it means that the 
different system configurations compared are not too 

different and thus the suggested IS densities will be 
efficient for all of them, i.e. for all φ in ISSO. Reference 
[20] provides a method for creating IS densities using 
samples of the model parameters.  

For problems with a high-dimensional vector θ, 
efficiency of IS can be guaranteed only under strict 
conditions [21]. An alternative approach can be applied 
for such cases: the uncertain parameter vector is 
partitioned into two sets, Θ1 and Θ2.  Θ1 is comprised of 
parameters that individually do not significantly influence 
the loss function (they have significant influence only 
when viewed as a group), while Θ2 is comprised of 
parameters that have individually a strong influence on 
h(φ,θ). The latter set typically corresponds to a low-
dimensional vector. IS is applied for the elements of Θ2 
only. This approach is similar to the one discussed in [22] 
and circumvents the problems that may appear when 
applying IS to design problems involving a large number 
of uncertain parameters. 

5. Illustrative example: reliability based 
design for a base-isolated structure 

The proposed framework is illustrated in an example 
considering the reliability-based optimization of a base-
isolation system for a three-story structure. Initially some 
brief comments are presented for reliability optimization 
problems (ROP) and the special characteristics they 
involve. We use the terminology ROP to distinguish the 
approach taken here, which is the direct optimization of 
the reliability of the system, from common Reliability-
Based Design Optimization problems, where the 
reliability requirements are forced by restrictions put on 
the admissible design space.    
 

5.1 Reliability-based optimal design  
In a reliability context, the overall performance of a 

system is quantified in terms of the plausibility of the 
occurrence of unacceptable performance, i.e.“failure”, 
based on all available information. This probability is 
expressed as: 

( | ) [ ( , )] ( , ) ( | )F FΘ
P F E I I p d= = ∫θφ φ θ φ θ θ φ θ  (28) 

where ΙF(φ,θ) is the indicator function of failure, which is 
1 if the system that corresponds to (φ,θ) fails, i.e. its 
response departs from the acceptable performance set, 
and 0 if it does not. A limit state function ( , )g φ θ  is 
typically used to evaluate the model performance. If 

( , )g φ θ >0 then the model is considered to perform 
unacceptably, i.e. fail. Reference [23] provides useful 
information for estimation of the integral in (28) using 
stochastic simulation. It discusses a highly efficient 
algorithm, called Subset Simulation, for estimation of 
small failure probabilities.  Also it provides guidelines for 
efficient MCMC sampling in reliability problems, that 
can be useful in the SSO setting for obtaining samples 
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from π(φ,θ). Note that for reliability problems, π(φ,θ) 
simply corresponds to the conditional on system failure 
pdf p(φ,θ|F) and the sample pairs for [φ,θ] that are 
distributed according to π(φ,θ)  can be simply considered 
as failed samples. 
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Figure 4. Comparison between (a) the two candidate 

performance measures for reliability objective problems 
and (b) the objective function estimates obtained through 

use of CRN for these two candidates. 
 
An important concept for reliability-based design is 

the existence of a model prediction error ε, i.e. an error 
between the model-predicted response and the actual 
system response. This error can be model 
probabilistically as a random variable [24] and added to θ 
to form an augmented uncertain parameter vector, 
comprised of both the model parameters and the model 
prediction error. It is possible in some cases to 
analytically evaluate the part of the integral (28) that 
corresponds to this prediction error: let g(φ)>0 and 

( , )g φ θ >0 be the limit state quantities defining the 
system’s and model’s failure respectively, and define ε so 
that the relationship ( , )g φ θ =g(φ)+ε(φ,θ) holds.  Then, if 

(.)εP  is the cumulative distribution function for the 
model prediction error ε(φ,θ), the failure probability can 
be equivalently expressed as [7]: 

( | ) [ ( ( , ))] ( ( , )) ( | )ε εΘ
P F E P g P g p d= = ∫θφ φ θ φ θ θ φ θ  (29) 

where in this case the vector θ corresponds solely to the 
uncertain parameters for the system and excitation model, 
i.e. excluding the prediction error. Thus, the performance 
measure in optimal reliability problems corresponds 
either to (a) h(φ,θ)=ΙF(φ,θ) or (b) h(φ,θ)= ( ( , ))εP g φ θ , 
depending on which formulation is adopted, (28) or (29). 
In Figure 4(a) these two loss functions are compared 
when ε is modeled as a Gaussian variable with mean 0 
and standard deviation 0.01.   

Note that since the indicator function IF(φ,θ) is 
discontinuous, the requirements that were discussed in 
Section 3.1 for establishing efficiency for usage of CRN 
cannot be guaranteed when formulation (28) is adopted. It 
is thus beneficial to use the formulation (29) for the 
probability of failure in CRN-based optimizations. For 
design problems where no prediction error in the model 
response is actually assumed, a small fictitious error 
should be chosen so that the optimization problems with 
and without the model prediction error are practically 
equivalent, i.e. correspond to the same optimum. 
Figure4(b) illustrates this concept; the influence on 
P(F|φ) of the two different performance measures and the 
advantage of selecting ( ( , ))ε sP g φ θ  is clearly 
demonstrated.  

 
5.2 Structural and excitation models 
A three-story symmetric building is considered and it 

is modeled (Figure 5)  as a planar shear building with 
uncertain inter-story stiffness and uncertain classical 
modal damping. The lumped mass of the top story is 636 
ton while it is 817 ton for the bottom two. The inter-story 
stiffnesses ki of all the stories are parameterized by 
ki= ,

ˆ
k i iθ k , i=1,2,3, where [ ι̂k ]=[633.9, 443.7, 253.6] 

MN/m are the most probable values for the inter-story 
stiffness, and θk,i are nondimensional uncertain 
parameters, assumed to be correlated Gaussian variables 
with mean value one and covariance matrix with 
elements:  

2 2 2(0.1) exp[ ( ) / 2 ]ij i j= − −K  (30) 

that roughly imply significant correlation between inter-
story stiffness’s within two stories apart and c.o.v. of 
10%. The damping ratios for the modes are modeled as 
independent Gaussian variables with mean value 5% and 
coefficient of variation 10%.  

A base-isolation system, with lead-rubber bilinear 
isolators and supplemental viscous dampers at the base 
level, is designed for the protection of the superstructure. 
The mass of the base is 999 ton. The pre-yield, Kpr, and 
post-yield, Kp, stiffness and the yield force, Fy, are the 
design variables φ for the isolation system along with the 
damping coefficient, cd, for the dampers. A simplified 
problem with only two design variables is also formulated 



Accepted for publication in “Computer Methods in Applied Mechanics and Engineering” 

 12

by setting the post-yield stiffness equal to 15% of the pre-
yield stiffness and the viscous dampers to 5% critical 
damping assuming a nominal period of 2.25 sec for the 
isolated structure (thus only Kpr and Fy are design 
variables in this case). The simplified problem is denoted 
by D1 and the full one by D2. 
 

m3

m2

m1

mb

δ1

δ2

δ3

δb

kpr

kp
Fy

Earthquake 
Excitation

Dashpots are 
schematic.
Structure is 
modally damped

Bilinear Isolator

Viscous 
Damper with 
viscosity cd

δb

 
Figure 5: Structural model assumed in the study 

 
In order to estimate the structural system reliability, 

probability models are established for the seismic hazard 
at the structural site, which corresponds to potentially 
damaging future near-fault ground motions (since we 
discuss base-isolated structures). The uncertainty in 
moment magnitude for seismic events,  M, is modeled by 
the Gutenberg-Richter relationship [25] truncated on the 
interval [Mmin, Mmax]=[6, 8],  leading to a PDF :  

min max

exp( )( )
exp( ) exp( )

b bMp M
bM bM

−
=

− − −
 (31) 

with regional seismicity factors selected as b=0.7loge(10). 
For the uncertainty in the event location, the logarithm of 
the epicentral distance, r, for the earthquake events is 
assumed to follow a Gaussian distribution with mean 
log(20) km and standard deviation 0.5. Figure 7(a) 
illustrates the PDFs for M and r. 

For the ground motion, the probabilistic model 
described in detail in [26] is adopted: the high-frequency 
and low-frequency (long-period) components of the 
earthquake excitation are separately modeled and then 
combined to form the acceleration input. The high-
frequency component is modeled by the stochastic 
method (see [27] for more details) which involves 
modifying a white-noise sequence Zw by (i) a time-

domain envelope function and (ii) a frequency-domain 
filter, that are both expressed as nonlinear functions of the 
moment magnitude and the epicentral distance of the 
seismic event. The specific characteristics for these two 
steps are the ones described in [26]. The long period 
(pulse-like) component of near-fault ground motions is 
modeled by the pulse model presented in [28], which 
involves a simple analytical expression for the time 
history of the pulse. The magnitude and the frequency of 
the pulse are chosen according to the probabilistic models 
for near-field pulses in rock sites given in [29] (the 
logarithms of both are modeled as Gaussian 
distributions). The number of half-cycles, γ, and phase, v, 
for the near-fault pulse are additional model parameters. 
The probability models for these parameters are chosen, 
respectively, as Gaussian with mean 1.8 and standard 
deviation 0.3 and uniform in the range [-π/2, π/2]. Figure 
6 illustrates a sample excitation generated according to 
this ground motion model. The existence of the near-field 
pulse is evident in the velocity time history. 

The uncertain parameter vector in this design 
problem consists of the structural model parameters, θs, 
the seismological parameter θg=[M, r], the additional 
parameters for the near-fault pulse θp and  the white-noise 
sequence, Zw, so θ=[θs, θg, θp, Zw]. Note that Zw 
corresponds to a 5001-dimensional vector in this case 
(partitioning of a 50 sec time window into intervals of 
0.01sec).  
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Figure 6. Sample near-field earthquake excitation 

 
Failure for the system is defined to be that any of the 

inter-story drifts, base displacement or shear force at the 
first story exceeds the thresholds 0.0105m, 0.25 m and 
0.24g of the superstructure mass, respectively. Function 

( , )g φ θ is defined as the logarithm of the maximum over 
the excitation duration of these performance variables 
(normalized by their respective threshold). A small model 
prediction-error is assumed that is Gaussian with mean 0 
and standard deviation 0.05. The initial design interval for 
each design variable is defined as Kpr∈[10,240] MN/m, 
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Fy∈[1,5] MN, Kp∈[1,50] MN/m and cd∈  [0.1,10] 
MNsec/m.  
 

5.3 Optimization algorithm characteristics 
The two-stage framework discussed in section 4.1 is 

used. For the SSO algorithm (Section 2.5), the parameter 
selections are: ρ=0.2, N=3000. The shape for the 
admissible sets I is selected as a hyper-ellipse and the 
adaptive identification is stopped when ˆ ˆ( )kH I becomes 
larger than 0.8. For the non-smooth optimization of (21) 
an algorithm based on direct-search is chosen [30]. 

SPSA with CRN (Section 3.3) is adopted for the 
second stage of the optimization, with parameter 
selection: β=0.71, ζ=0.25, N=1500. Convergence is 
judged by looking at the norm 1k k+ ∞

−φ φ  for each of 
the five last iterations. If that norm is less than 0.2% 
(normalized by the dimension of the initial design space), 
then we assume that convergence to the optimal solution 
has been established. Formulation (29) is used in the 
SPSA optimization in order to improve the efficiency of 
CRN comparisons, as discussed earlier. The guidelines 
discussed in section 4.1 are adopted for selection of step 
sizes and blocking rules for SPSA. To implement these 
guidelines, normalization of the search space is 
performed so that the hyper-ellipse ISSO is transformed 
into a unit radius hyper-sphere. 

For the second optimization stage (SPSA), following 
the discussion in Section 5.2, importance sampling 
densities are established for the structural, near-field 
pulse model parameters and the seismological parameters, 
but not for the high-dimensional white-noise sequence 

Zw. Apart from the phase of the near-field pulse, v, for 
which the samples from π(v) were found to be distributed 
similar to p(v) (indicating that this model parameter has 
small influence on the response of the model), for the rest 
of the parameters, the IS PDFs were approximated by 
Gaussian distributions, like the prior distributions p(θi), 
but with a shifted mean value and variance, selected as 
the mean and variance of the samples from the SSO stage 
that are distributed according to π(φ). Figure 7(b) 
illustrates this concept for M and r for problem D1. Note 
that the IS PDF for M  and r are significantly different 
from their initial distribution; since these seismological 
parameters are expected to have a strong influence on the 
model response, the difference between the distributions 
is expected to have a big effect on the accuracy of the 
estimation. For problem D1 the c.ov. for ˆ( | )P F φ  for a 
sample size N=1500 is 12.5% without using IS and 4.4% 
when IS is used. This c.o.v. is of the same level for all 
values of φ∈ΙSSO (since the ISSO set is relatively small 
good efficiency is achieved). Note that the c.o.v. varies 
according to 1 / N  [11]; thus, the sample size for direct 
estimation ( i.e. without use of IS) of ˆ( | )P F φ  with the 
same level of accuracy as in the case when IS is applied 
would be approximately 8 times larger. This illustrates 
the efficiency increase that can be established by the IS 
scheme discussed earlier. Similarly, for problem D2 the 
c.o.v. is 4.9% when IS was used and 16.2% when not. In 
this case a sample size that is 11 times larger is needed 
for direct estimation of ˆ( | )P F φ  for establishing the same 
accuracy as with the IS scheme.  
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Table 1: Results from a sample run of the SSO algorithm for two design problems 

Iteration of SSO  Iteration of SSO Problem D1 
nφ=2, ÎSSO=Î3  1 2 3  

Problem D2 
nφ=4, ÎSSO=Î6 1 2 3 4 5 6 

1
ˆ ˆ/
k kI IV V

−
 0.381 0.265 0.241  

1
ˆ ˆ/
k kI IV V

−
 0.286 0.345 0.305 0.271 0.259 0.230

1
ˆ ˆ/φ

k k

n
I IV V

−
 0.617 0.514 0.491  

1
ˆ ˆ/φ

k k

n
I IV V

−
 0.731 0.7676 0.743 0.722 0.713 0.693

Ĥ(Îk) 0.525 0.754 0.830  Ĥ(Îk) 0.698 0.580 0.657 0.738 0.772 0.865

ˆ /
SSOIV VΦ  0.0243  ˆ /

SSOIV VΦ  4.85 10-4 

ˆ /
SSO

n
IV Vφ

Φ  0.156  ˆ /
SSO

n
IV Vφ

Φ  0.149 

 
 

5.4 Results and discussion  
Results for a sample run are presented in Τable 1 for 

the SSO and in Table 2 and Figures 8 and 9 for the 
combined optimization framework. The SSO algorithm 
converged in 3 iterations for problem D1 and in 6 
iterations for problem D2 to sets that are characterized by 
small sensitivity to the objective function (Isso in Figures 
8 and 9 with center φSSO). SPSA was then used to 
pinpoint the optimal solution, φ*, within these sets (point 
X in the aforementioned figures). The results of this 
sample optimization run are discussed in more detail next, 
focusing on the aspects related to the novel SSO 
algorithm. 

 
Table 2: Cumulative results for a sample run of the 
stochastic optimization framework 

  φSSO ˆ ( | )SSOP F φ φ* *ˆ( | )P F φ  

Kpr 98.05 92.75 D1 Fy 2.35 
0.0391 

2.44 
0.0386 

Kpr 68.2 53.2 
Fy 1.76 1.92 
Kp 15.56 13.93 

D2 

cd 4.21 

0.0240 

4.24 

0.0229 

 
SSO leads to a significant reduction of the size 

(volume) of the search space for both design problem; 
this is evident in both Table 1 (last two rows) as well as 
Figures 8 and 9. These two figures and Table 2 also 
illustrate that SSO efficiently identifies a subset for the 
optimal design variables; the converged optimal solution 
in the second stage, φ*, is close to the center of the set 
that is identified by SSO, φSSO; also the objective function 
at that center point ˆ( | )SSOP F φ is not significantly 
different than the optimal value *ˆ( | )P F φ  (Table 2). 
Thus, selection of φSSO as the design choice leads to a 
sub-optimal design but close to the true optimum in terms 

of both the design vector selection and its corresponding 
performance. All these characteristics illustrate the 
effectiveness and quality of the set identification in SSO. 
Note that as the algorithm evolves, this quality, expressed 
by Ĥ(Îk), decreases (Table 1). Within ISSO, the small 
sensitivity of the objective function to φ cannot be easily 
captured by samples obtained by stochastic simulation, 
unless a large number of them are available. Instead, 
SPSA is chosen here for pinpointing the optimal design 
variables.  

For the design problem D2 the difference of the 
shapes of the initial design space and the admissible 
subsets is considerable (difference of volume of four-
dimensional hyper-rectangles and the inscribed 
hyperellipses). As discussed earlier, this leads to some 
small loss of quality for the first stage of the 
identification; Ĥ(Îk) in the first iteration is larger than the 
second one, though typically it is expected to be a 
decreasing function of the iteration number [7]. This 
feature does not influence, though, the overall quality of 
the SSO identification as evident by the rest of the results. 

 

50 100 150 200

1

2

3

4

5

φSSO

Kpr

Fy
φ*

 
Figure 8. Sets ISSO  (ellipse) and Φ (rectangle) for 

problem D1 

 
The ability of SSO to estimate contours of the 

objective function and capture the correlation between the 
design variables is illustrated in Figures 8 and 9. This 
correlation can be demonstrated also by looking at the 
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normalized positive definite matrix, M, that defines the 
ellipses:  

( ) ( )1/2 1 1/2 1T
SSO SSO

−− − =φ φ D M D φ φ  (32) 

where normalization is used in order to make all diagonal 
elements of M be unity. The off-diagonal elements of M 
show the correlation between the different design 
variables (similar to the concept of correlation for a 
Gaussian PDF); the larger the absolute values of these 
elements the more important the correlation between the 
design variables. For the sample run of SSO discussed in 
this section, these matrices are respectively: 

1

                             

1 0.74
D :  

0.74 1

pr y

pr

y

K F

K
F

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

M
 (33)  

2

                                            

1 0.71 0.19 0.45
0.71 1 0.66 0.43

D :
0.19 0.66 1 0.09
0.45 0.43 0.09 1

pr y p d

pr

y

p

d

K F K c

K
F
K
c

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

M
 (34) 

The correlation between pairs of design variables 
indicated by these matrices can be visually verified in 
Figures 8 and 9; the highly-correlated are variables Kpr 
and Fy in design problem D1 and pairs of variables Kpr-Fy, 
Kpr-cd, Fy-Kp  and Fy-cd  in problem D2. These higher 
correlations mean that these pairs of design variables can 
be traded off without significantly changing the objective 

function. Note, also, that the correlation relationship 
between Kpr and Fy  is the same in both design problems.  

The influence of the number of the design variables 
in the efficiency of SSO, now, is evident when comparing 
the results in Table 1 between the two design cases. For 
D2 the average reduction of the size for each design 
variable (second row of Table 1) is much smaller which 
leads to more iterations until a set with small sensitivity 
to the objective function is identified. The proportionality 
dependence with regard to the computational cost of SSO 
argued in Section 2.3 is also verified in the context of the 
example discussed here: the mean total length reduction 
over all iteration for D1 and D2, corresponding to the 
quantity in equation (20), is similar (look at last row in 
Table 1) but the number of required iterations for 
convergence to the Isso set for D2 (which has twice as 
many design variables) is only double. 

A comment with respect to the effectiveness of the 
base isolation protection system in this example is, 
finally, warranted. Design D2 involves much larger 
versatility in the selection of the characteristics of the 
isolation system, and thus leads to smaller failure 
probability, as expected. The period of the base isolated 
structures for a displacement of base displacement of 
25cm is 2.4 sec for D1 and 2.47 sec for D2. These 
selections seem reasonable based on common design 
practice for base isolation systems and verify the validity 
of the stochastic framework chosen (system and 
excitation models, modeling uncertainty and objective 
function formulation).    
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5.5 Efficiency of optimization framework 
The efficiency of the suggested optimization 

framework is judged by performing the same 
optimization by applying only SPSA, without using any 
information from SSO; the optimization in this case is 
performed with respect to the initial design space, Φ, by 
randomly selecting the starting point for the algorithm. In 
this case IS is not implemented; since search inside the 
whole design space Φ is considered, it is unclear how 
samples of θ can be obtained to form the IS densities and 
separately establishing an IS density for each design 
choice φ is too computationally expensive. Larger values 
for the sample size, N,  are chosen in order to establish 
similar c.o.v. near the optimal solution as in the case that 
IS is implemented; according to previous discussion the 
selection for N  is 8 times larger than in the two-stage 
approach for problem D1 and 11 for D2 . In 10 runs, the 
average number of iterations (and its standard deviation) 
for convergence to the optimal solution was (a) for D1: 
with SSO 20.42 (4.5) and without 59.5 (21.4) and (b) for 
D2: with SSO 30.5 (9.4) and without 98.4 (36.9). In order 
to evaluate the effectiveness of the two-stage framework 
discussed, note that the computational cost of one 
iteration of SSO, in terms of system simulations needed, 
is equal to the computational cost of one iteration of 
SPSA; thus, one can simply add three and six additional 
iterations to the means for problems D1 and D2 in (a) and 
(b), respectively, when SSO is used.  This comparison 
illustrates the effectiveness of the proposed two-stage 
optimization framework to enhance the efficiency of 
stochastic optimization. It should also be noted that use of 
SSO leads to more consistency in the optimization 
efficiency (smaller variation). The better starting point of 
the algorithm, as well as the smaller size of the search 
space which allows for better normalization, that SSO can 
provide, are the features that contribute to this 
improvement in efficiency. If we consider the added 
efficiency because of the use of IS when the combined 
framework is chosen, then the computational advantages 
from using this framework are even higher: in this 
example the computational cost of each iteration of SPSA 
is 8 and 11 times smaller for problems D1 and D2, 
respectively,  in the setting of the combined framework. 

5. Conclusions 
 
In this study, we discussed robust stochastic 

optimization problems that entail as objective function the 
expected value of any system performance measure. 
Stochastic simulation was considered for evaluation of 
the system performance. This simulation-based approach 
allows for explicit consideration of (a) nonlinearities in 
the models assumed for the system and its future 
excitation and (b) complex system performance measures 
(or complex decision-theoretic utility functions). A two-

stage framework for the associated optimization problem 
was discussed. The first stage implements an innovative 
approach, called Stochastic Subset Optimization (SSO), 
which is based on formulating an augmented design 
problem that artificially considers the design variables as 
uncertain with uniform probability distribution over the 
admissible design space. Then the original objective 
function is proportional to an ancillary PDF, samples of 
which can be obtained through advanced stochastic 
simulation techniques. Using the information contained in 
samples SSO efficient explores the sensitivity of the 
objective function to the design variables and adaptively 
identifies sub-regions inside the original design space that 
(a) have the highest likelihood of including the optimal 
design variables within the class of admissible subsets 
considered and (b) are characterized by small sensitivity 
with respect to each design variable (so these subsets 
consist of near-optimal solutions). For efficiently 
establishing higher accuracy for the optimal design 
variables, SSO can be followed by a second stage 
involving some other stochastic search algorithm. The 
information for the sensitivity of the objective function to 
the design variables available from the SSO stage can be 
used to readily tune the characteristics of the algorithms 
used in the second stage. This two-stage approach can 
provide overall enhanced efficiency and accuracy of the 
optimization process. Simultaneous perturbation 
stochastic approximation was suggested for the second 
stage in this study and suggestions were provided for 
improved efficiency of the overall framework.  

With respect to SSO, guidelines were suggested for 
establishing good quality in the identification, for 
selecting the appropriate shape and size for the class of 
admissible subsets, and for the stopping criteria for the 
iterative process. An important step for the accuracy of 
SSO is the identification of the optimal subsets within the 
considered class of admissible subsets. This optimization 
sub-problem (within the SSO framework) is quite 
challenging, because it has non-smooth characteristics, 
and it corresponds to a potential difficulty associated with 
the SSO implementation. Attention needs to be given to 
the appropriate selection of algorithms and 
parameterization of the admissible subsets to ensure a 
reliable solution to this sub-problem. For the second stage 
of the two-stage optimization framework, the use of 
common random numbers was extensively discussed. 
Implementation of importance sampling for this stage was 
also considered by using the information available in the 
last iteration of SSO. 

An example was presented that shows the efficiency 
of the proposed methodology; it considers the 
optimization of a base-isolation system for a three-story 
structure. The optimization of the reliability of the system 
considering future near-fault ground motions was adopted 
as the design objective. A realistic probability model was 
chosen for representing these ground motions. The 
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structural performance was evaluated by nonlinear 
simulation that incorporates all important characteristics 
of the behavior of the structural system and all available 
information about the structural model and expected 
future earthquakes. It was demonstrated in the context of 
this example that SSO can efficiently identify a set that 
contains the optimal design variables and is characterized 
by small sensitivity with respect to the objective function, 
and that it also can improve the efficiency of SPSA when 
combined as in the suggested optimization framework. 
Additionally, SSO was demonstrated to be able to 
describe the correlation between the design variables in 
terms of the contours for the objective function. The 
implementation of importance sampling using the 
information for SSO was also shown enhance the overall 
efficiency. 

Appendix A: Sampling techniques 
Two algorithms that can be used for simulating 

samples from π(φ,θ) are discussed here. The first one is 
the accept-reject method which may be considered to 
belong to direct Monte Carlo methods. First, choose an 
appropriate proposal PDF f(φ,θ) and then generate 
independent samples as follows: 
(1) Randomly simulate candidate sample [φc, θc] from 
f(φ,θ) and u from uniform (0,1). 
(2) Accept [φ,θ]=[φc,θc] if  

,

( , )
( , )  

( , )
( , )where max ( , )
( , )

c c
s c c

c c

s

p
h u

Mf
pM h
f

>

>
φ θ

φ θ
φ θ

φ θ
φ θφ θ
φ θ

 (35) 

(3) Return to (1) otherwise 
The second one is the Metropolis-Hastings algorithm, 

which is a Markov Chain Monte Carlo method and is 
expressed through the iterative form: 
(1) Randomly simulate a candidate sample [ ˜ φk+1,˜ θk+1] 
from a proposal PDF q( ˜ φk+1,˜ θk+1||φk,θk). 
(2) Compute acceptance ratio: 

1 1 1 1 1 1
1

1 1 1 1 1 1

( , , ) ( , , ) ( | , )
( , , ) ( , , ) ( , | , )

s k k k k k k k k
k

s k k k k k k k k

h p q ,
r

h p q
+ + + + + +

+
+ + + + + +

=
φ θ φ θ φ θ φ θ
φ θ φ θ φ θ φ θ

 (36) 

(3) Simulate u from uniform (0,1) and set 

1 1 1
1 1

[ ] if 
[ ]

[ ] otherwise
k k k

k k
k k

, r u
,

,
+ + +

+ +

⎧ ≥⎪= ⎨
⎪⎩

φ θ
φ θ

φ θ
 (37) 

In this case the samples are correlated (the next sample 
depends on the previous one) but follow the target 
distribution after a burn-in period, i.e. after the Markov 
chain reaches stationarity. The algorithm is particularly 
efficient when samples that follow the target distribution 
are already available. Since the initial samples are 
distributed according to π(θ,φ), the Markov Chain 

generated in this way is always in its stationary state and 
all simulated samples follow the target distribution. The 
efficiency of both these sampling algorithms depends on 
the proposal PDFs f (φ,θ) and q( ˜ φ,˜ θ||φ,θ). These PDFs 
should be chosen to closely resemble h(φ,θ)p(φ,θ) and 
still be easy to sample from. If the first feature is 
established then most samples are accepted and the 
efficiency of the algorithm is high (see [11, 23] for more 
details). 
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