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SUMMARY

A probability-based active control synthesis is proposed for seismic base isolation of a structure that is
modeled as a linear dynamical system subjected to uncertain future ground motions that are modeled as a
stochastic process. The performance objective is the minimization of the probability of failure, where
failure is defined as the first-passage of the system trajectory across a generalized set of hyperplanes in the
system response space. Versions of the approach are described for the case with no model uncertainty, as
well as for the case with uncertain model parameters with probabilistically distributed values. Numerical
issues pertaining to the optimization of the controller are discussed. The method is illustrated in a civil
engineering context through application to the eight-storey base isolation benchmark structure model,
using an array of ideal active control devices working in tandem with the passive base isolation bearings.
Controllers are presented for cases with specified and uncertain earthquake spectral parameters, and for
two different actuator configurations. Transient simulations are presented for seven earthquake records,
and the performances of the controllers are analyzed under a number of metrics. Comparisons with the
performance of a related linear-quadratic controller are presented and discussed, both for stationary as
well as transient response. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last two decades, there has been a growing interest in the application of active control
technologies to civil structures, toward the reduction of seismic risk. The extensive efforts of
many researchers have yielded numerous manifestations of this idea, resulting in several distinct
actuation strategies and controller designs [1–3]. Of these many approaches, active base
isolation systems have emerged as one of the more promising. Because of the growing body of
work devoted to these systems, and the inevitable disparity of the various proposed approaches,
it is useful to make comparisons on a common example representing a typical application. This
has motivated the recent proposal by the ASCE Structural Control Committee of the Base

Received 17 December 2004
Revised 4 April 2005

Accepted 28 May 2005Copyright # 2005 John Wiley & Sons, Ltd.

yE-mail: scruggs@caltech.edu

*Correspondence to: J. T. Scruggs, Division of Engineering and Applied Science, California Institute of Technology,
Pasadena, CA 91125, U.S.A.



Isolation Benchmark Control Problem [4], the details of which may also be accessed on the
internet at http://www.ruf.rice.edu/�nagaraja/baseisolationbenchmark.htm. It consists of an
eight-storey irregular structure equipped with passive isolation bearings, which may be fitted
with different actuators (both active and semi-active devices may be considered) and controlled
through various feedback laws. In addition to a specified structural dynamic model, the problem
statement imposes various constraints on the actuators, sensors, and control laws which may be
used, and requires that different approaches be compared under a common set of performance
measures. As such, a comparison of different base isolation strategies becomes more
straightforward.

The motivation for the application of control technology to civil systems, and the metrics by
which the quality of such systems are judged, ultimately stems from the concept of system
reliability. It stands to reason, then, that the optimal control strategy in such applications
should be that which maximizes this reliability. Theoretical reliability-based control methods
such as H1 and m-synthesis, and the many offshoots of these, have emerged as the standard
tools in the design of feedback controllers which are robust to model uncertainty, where a
compact set of possible models for the system is considered. Information implying that some of
the possible values of the model parameters are more probable than others is not explicitly
treated. However, in most applications, there is considerable engineering knowledge about the
relative likelihood of the parameter values. This information can be expressed by specifying
probability distributions over the possible values of the parameters. This observation has led to
a number of studies involving a probabilistic interpretation of robustness. A sequence of papers
by Stengel et al. [5–7] addresses the robust stabilization of uncertain systems for which the
model uncertainty is characterized through probability density functions on model parameters,
and where Monte Carlo simulation was used to converge upon a probabilistic-optimal
controller. The idea of probabilistic performance optimization was also investigated by Spencer
et al. [8], in which FORM/SORM techniques were used to derive an optimal linear controller for
a system with probabilistic parameter uncertainty and stochastic excitation.

Another approach [9,10] also deals with a probabilistic treatment of robust stochastic control
synthesis. The definition of controller performance used in these studies is motivated by the
observation that in civil applications, the ‘failure’ of a control system is related to the
probability of first-passage of the system response beyond design thresholds. Such thresholds
can be represented as hyperplanes, or ‘failure surfaces’, in the system response space. (Such
failure surfaces may be defined to correspond to maximum allowable drifts, accelerations,
forces, etc.) In this context, the optimal-reliability controller is the one which minimizes the
probability of first-passage across these failure surfaces.

The main contribution of this paper is the application of the above reliability-optimal control
design approach to the benchmark base isolation problem. The active control devices used in this
study comprise an array of ideal force actuators acting in tandem with the passive isolation
bearings. Arrays of both four and eight actuators are considered. The failure criteria consist of
thresholds on allowable deformations, accelerations, and forces for the structure–actuator system.
For simplicity, four-channel static acceleration feedback is used to give structure to the controller
model set over which the optimization is performed. However, in principle, the general procedure
considered here can be extended to a much broader class of linear controllers [10].

Section 2 presents an overview of the analytical basis for the approach, the processes involved in
designating the failure surfaces, and the numerical issues involved in the convergence to the
optimal solution. Section 3 discusses the benchmark base isolation model. Section 4 frames the
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proposed probabilistic control optimization in the context of this benchmark model and
establishes failure criteria. Section 5 presents simulation results for the benchmark model, and
presents some comparisons with performances achieved through linear-quadratic (LQ)
optimization methods. Finally, Section 6 draws some conclusions and points toward future work.

2. FAILURE SURFACES AND MINIMIZATION OF FAILURE PROBABILITY

2.1. Optimal-reliability controllers with known model parameters

Consider a controlled linear system subject to stochastic excitation, i.e.

’x ¼ Axþ Buþ Ea ð1Þ

where x 2 Rn is the state vector, u 2 Rm is the control input, and a 2 Rp is a vector of Gaussian
white noise disturbances with spectral intensity Ua. For a structural model subjected to
earthquake excitation, state vector x is an augmentation of the structural states, together with
states relating to the control law, sensor and actuator dynamics, and the stochastic ground
acceleration input model [10]. The dynamics of the sensors and ground acceleration are modeled
as linear systems subjected to Gaussian white noise inputs. Thus, a is comprised of the noise
inputs for both the ground acceleration and the sensor models.

In this paper, we assume a memoryless feedback controller of the form

u ¼ KCx ð2Þ

where output feedback matrix C 2 Rr�n selects the observed components of the state, and gain
matrix K 2K; where K� Rm�r is the allowed set of controller gain matrices.

First, consider a failure region in the system state space defined by the inequality

jyj ¼ jqTðKÞxj5b ð3Þ

where the corresponding pair of failure surfaces is the affine subset jyj ¼ b in the state space.
Here, it is assumed that the failure surface is linear in x and u; i.e.

qðKÞ ¼ qx þ CTKTqu ð4Þ

with appropriately-sized vectors qx and qu.
In an interval [t,t+dt] of infinitesimal width, the probability of ‘out-crossing’ of a system

trajectory across the failure surface is given by Rice’s theory [11,12] as nt(K) dt, where nt is the
out-crossing rate. In stationary response, nt is a constant value n, equal to

nðKÞ ¼
s’y

psy
exp �

1

2

b2

s2y

" #
ð5Þ

where sy and s’y are the standard deviations of the Gaussian probability distributions for y and
’y: Note that

’y ¼ qTðKÞ½Aþ BKC�xþ qTðKÞEa ð6Þ

Because a is defined as a white noise, and because s’y must be finite in order for Equation (5) to
be well defined, it is necessary that q(K) in Equation (3) be defined such that

qðKÞ ? E 8K 2K ð7Þ
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It is then a well-known result of stochastic mechanics that the probability of failure in a finite
time interval [0,T], under stationary response, can be expressed approximately as

P½0;T �ðF j KÞ ffi 1� exp½�nðKÞT � ð8Þ

Here, it has been assumed that n�1; and T is much greater than the time constants associated
with the closed-loop system. In other words, the approximation is reasonable if failures are
unlikely, and if the system response distribution may be assumed to be stationary over most of
the interval [0,T].

Now consider the case of l pairs of failure surfaces, each parameterized as in Equation (3) by
the set {qk(K), bk} for k 2 f1::lg: This is illustrated in Figure 1 for two pairs of surfaces on two
states. Thus, we have a vector y of performance quantities related to the states and control
through

y ¼ CyxþDyu ð9Þ

where failure at time t corresponds to

max
k2f1;...;lg

fjykðtÞj � bkg50 ð10Þ

and

Cy ¼ ½qx1 . . . qxl�
T Dy ¼ ½qu1 . . . qul �

T ð11Þ

Denoting the stationary out-crossing rates for each failure surface jykðtÞj ¼ bk as nk(K), we
have that the total probability of failure in a time window [0,T] is approximately [13]

P½0;T �ðF j KÞ ffi 1� exp �
Xl
k¼1

nkðKÞT

" #
¼ 1� exp½�nSðKÞT � ð12Þ

where nSðKÞ is the sum of the out-crossing rates for all surfaces. This approximation is justified if
the failures are unlikely and not highly correlated. In this context, it follows naturally that an
optimal-reliability gain K

* will be that gain which minimizes P½0;T �ðF j KÞ over K 2K: For any
specified time window, this is equivalent to the minimization of the total out-crossing rate nS(K).
Thus, this total out-crossing rate may be viewed as a performance measure to be optimized over

x

x
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Figure 1. Example of failure surfaces on two states.
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the control gain space K; i.e.

K� ¼ arg min
K2K

fnSðKÞg ð13Þ

This optimization may be accomplished in a number of ways. The simplest of these involves
the incorporation of the gradient @nS(K)/@K into a first-order ‘steepest-descent’ convergence
algorithm. When executed, this approach will converge (very slowly) to a local minimum in nS.
However, it should be noted that nS(K) is in general nonconvex, and hence may have many local
minima in K: The development of efficient global optimization methods for this problem is still
under investigation.

Some care must be taken in the designation of failure surfaces, and the above discussion does
not address all the aspects of this process. For instance, the optimizing K* should imply stability
for the entire state space. This condition is not implied by the above discussion, but can be
ensured by placing certain detectability constraints on Cy and Dy. Additionally, in order for
approximation (12) to hold, the failure surfaces should be chosen such that there is a low
correlation between any two failures, which again places constraints on the Cy and Dy, as well as
b. While important, these issues are beyond the scope of this paper, the purpose of which is
primarily demonstrative. They will be addressed in a separate forthcoming paper.

2.2. Probabilistic model uncertainty

Realistically, any model used for the development of a structural controller will have some
parametric uncertainty, which may stem from multiple sources. Clearly, there will be some
uncertainty associated with the structural model. However, it is arguable that the uncertainty in
the stochastic ground acceleration model is the more dominant source. In this study, the
earthquake acceleration is incorporated into Equation (1) as a filter that shapes white noise.
There exists a great degree of uncertainty as to the appropriate spectral characteristics of this
filter to represent possible ground motions at the structural site. This may be incorporated into
Equation (8) as a probabilistic uncertainty on the filter parameters associated with the
earthquake ground motion model.

Let the vector of these uncertain model parameters be denoted h 2 Y; where Y�Rh denotes
the model class chosen for the problem, and may in general be a non-compact set. The
uncertainty in h is modeled by the PDF p(h |Y). Thus, the total probability of failure for a given
controller K is denoted

P½0;T �ðF j K;YÞ ¼
Z
Y
P½0;T �ðF j K; hÞpðh j YÞ dh

¼ 1�
Z
Y
expð�nSðK; hÞTÞpðh j YÞ dh ð14Þ

and thus the probabilistic failure-optimal controller may be found as

K� ¼ arg max
K2K

Z
Y
expð�nSðK; hÞTÞpðh j YÞ dh

� �
ð15Þ

Note that Equation (15) is not equivalent to a minimization of the mean of nS over Y.
The evaluation of the integral in Equation (15) must in general be performed numerically, and

this is nontrivial because its dimension grows with the number of uncertain parameters, and
because the typical failure rates considered in this analysis are very low. To approximate the
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integral, we here follow the methods in [9,10], which entails fitting a Gaussian distribution to the
integrand about a maximal design point. Specifically, define

sðK; hÞ ¼ �nSðK; hÞT þ log pðhjYÞ ð16Þ

Then it follows that the parameter h� 2 Y which maximizes Equation (16) also maximizes the
integrand of Equation (15). Using a second-order Taylor series expansion of Equation (16)
about h*, the integrand of Equation (15) is approximately a Gaussian distribution with mean h*,
so the integral is approximatelyZ

Y
expð�nSðK; hÞTÞpðh j YÞ dhffi ð2pÞh=2

exp½�nSðK; h�ÞT �pðh� j YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfHðK; h�Þg

p ð17Þ

where HðK; hÞ ¼ �ryrys is the negative of the negative-definite Hessian matrix with respect to
h. Details concerning the derivation of this result can be found in the literature [14].

Thus, the probabilistic optimal-reliability controller can be approximately found through two
simultaneous optimizations:

K� ¼ arg maxK2K
exp½�nSðK; h�ÞT � pðh� j YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðHðK; h�ÞÞ
p

( )

h� ¼ arg maxh2H f�nSðK
�; hÞT þ log pðh j YÞg

ð18Þ

Efficient optimization routines for this problem remain an item of ongoing research. In this
paper, the optimization is carried out using MATLAB [15] optimization functions fmins(.),
which employs a Nelder–Mead nonlinear simplex algorithm, and fmincon(.), which uses a more
elaborate convergence method. It is acknowledged that there is no guarantee that the global
maximum of the two optimization problems is attained; in practice, the optimization algorithm
will converge to a local maximum near the starting value.

3. THE BASE ISOLATION BENCHMARK CONTROL PROBLEM

The benchmark structural model represents a base-isolated structure with nt ¼ 8 floors, with the
horizontal x and y coordinates for the ith floor denoted as xiis and yiis; respectively. There are
nb ¼ 92 bearings and nc actuators between the base and the ground, with x and y coordinates for
the ith actuator denoted xic and yic; respectively. The superstructure is a linear elastic system. The
base and floor slabs are assumed to be infinitely rigid in plane and are modeled by three master
degrees of freedom (two horizontal and one rotational about the vertical axis) located at the
centers of mass of each floor.

3.1. Design model description

The structural model has mass, damping and stiffness matrices Mp, Cp, and Kp. The differential
equation for the coordinate vector p (consisting of the lateral and rotational displacements for
each floor as well as the base) can be expressed as

Mp .pþ Cp ’pþ Kpp ¼
03nt�3

I

" #
uf þ

MsR

RTMsRþMb

" #
.xg

0

" #
ð19Þ
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where .xg 2 R2 is the acceleration of the ground in the x and y directions. Vector uf 2 R3

contains the total control forces on the base in the x and y directions and the total control
torque about the base center of mass. Matrix R ¼ ½rnt . . . r1�T is the 3nt � 3 matrix of
earthquake influence coefficients, where matrices ri are defined as

ri ¼

1 0 yir

0 1 �xir

0 0 1

2
664

3
775 ð20Þ

where fxir; y
i
rg is the position of the center of mass of the ith floor with respect to the center of

mass of the base.
Acceleration .xg is modeled by a zero-mean stationary Gaussian process, represented as

’w ¼ Agwþ Bgag; .xg ¼ Cgw ð21Þ

where ag is a Gaussian white noise excitation vector in the x and y directions, with diagonal
spectral density Ug. The filtered noise is assumed to have a Kanai–Tajimi-like spectrum,
parameterized by zg and og as

Ag ¼
02�2 I2

�o2
gI2 �2ogzgI2

" #
; Bg ¼

02�2

I2

" #
; Cg ¼ ½02�2 4zgogI2� ð22Þ

and with equal noise intensity in both directions; i.e. Ug = fgI2.

3.2. Filtered accelerations for failure criteria

Recall that for the computation of the failure probabilities, Equation (7) must hold. However, if
some of the failure surfaces correspond to the absolute accelerations of various degrees of
freedom, this equation will be violated. This problem can be circumvented by using low-pass-
filtered estimates of these accelerations in the failure criteria [9], through the differential
equation

’xa ¼ Aaxa þ Baza

*za ¼ Caxa
ð23Þ

where vector za 2 Rl contains acceleration quantities for each failure surface k 2 f1::lg (some
may be zero), and *za contains the filtered values. Matrices Aa, Ba, and Ca correspond to a low-
pass filter with bandwidth 30Hz and damping ratio 0.707.

3.3. Acceleration feedback

The controllers considered in this study employ filtered acceleration feedback. For r acceleration
feedback measurements, define zc 2 Rr to be the vector of the actual accelerations at the
accelerometer locations, and *zc as the corresponding filtered values used in the controller. Then
the control force vector uf is related to *zc through control gain Kf as

uf ¼ Kf *zc ð24Þ

In this example, accelerometers are located at the base and the eighth floor, in both x and y
directions (i.e. r ¼ 4). Thus, Kf is a 3� 4 matrix.
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The acceleration filter can be viewed as the consequence of the mechanical dynamics of the
accelerometers and the chosen dynamics in the control law. Each filter is modeled as second-
order low-pass filter with bandwidth oc and damping zc. It is assumed that all filters have the
same filter parameters. The bandwidth oc is treated as a design parameter in the controller (i.e.
it is included in the K matrix), while zc is designated as 0.707. To formalize these ideas, the
acceleration feedback dynamics in the controller can be expressed as

’xc ¼ Acxc þ BcðKcxc þ zc þ acÞ

*zc ¼ o2
cCcxc

ð25Þ

where xc is the internal state of the controller, ac represents sensor noise modeled as white noise
with spectral density Uc, and where

Ac ¼
0r�r Ir

0r�r 0r�r

" #
Bc ¼

0r�r

Ir

" #
Cc ¼ Ir 0r�r

� �
Kc ¼ ½�o2

cI � 2zcocI�

Formulated as such, Kc is treated as a feedback control gain, which can be varied to reflect
different values of oc.

The total control input vector u is comprised of the structural forces uf, and the ‘control
inputs’ Kcxc to the acceleration filters. It follows that the total feedback control gain K relates xc
to u as

u ¼
Kf *zc

Kcxc

" #
¼ Kxc ð26Þ

where K has the structure

K ¼
o2

cKf 0

�o2
cI �2zcocI

" #
ð27Þ

3.4. The augmented system

The entire n-state system can be placed in the form of Equations (1) and (2) through the
augmentation of Equations (21), (23), and (25), with the entire state vector represented as

x ¼ ½pT ’pT wT xTa xTc �
T ð28Þ

and with appropriate definitions for A, B, and E. For the purpose of control system design, this
linear model was used. However, for simulations to evaluate controller performance, some
nonlinearities were imposed. As shown in Figure 2, the model incorporates actuator and sensor

structure q, q

acceleration
filter

filtered
accelerations

z

ac

x

K

u y
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spectrumag

structure

acceleration
filt r

c

filtered
accelerations

fzgx

y

acceleration
spectrum

[Cy + DyKC]x

..

.

∼

zz∼

Figure 2. Block diagram of simulated system.
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saturation, time delays and discretization errors. Additionally, the acceleration filter in Equation
(25) is mapped to an equivalent discrete-time representation, assuming zero-order-hold A/D
input conversion and a sampling interval of 5ms. The values adopted for all these parameters
are the ones suggested in the problem definition [4]. The entire system is simulated in
SIMULINK [16] with a numerical time step of 5ms.

3.5. Model uncertainty

Uncertainty is considered only in the model parameters for the spectrum of the ground
acceleration; i.e. og, zg and fg. The probability density functions chosen to model the uncertain
input parameters are

* og is log-normally distributed with mean 2p rad/s and slogo=0.5
* zg is log-normally distributed with mean 0.3 and slog z=0.2
* fg is log-normally distributed with mean 1 and slogf=0.3

The choice of the particular PDFs to model the uncertainty in the ground motion model is
somewhat arbitrary. However, the total failure probability does not depend strongly on the form
of the probability models, provided different choices for these models have similar most probable
values and similarly small curvatures for their distributions at that point, because the value of the
integral in Equation (14) is largely determined by the behavior of the integrand near its peak.

For the parameters of the PDFs, effort was made such that the distribution for the
earthquake spectrum roughly matches that of the set of the earthquake ground motions
considered, and the mean values for the parameters are equal to the ones adopted in the
benchmark problem statement [4].

3.6. Evaluation criteria

The benchmark problem statement defines nine evaluation criteria which represent measures of
different RMS and maximum responses of the buildings for seven different earthquakes.
Evaluation criteria J1 and J2 represent the peak base shear at isolation level and the structure
shear at the first story level. J3 is the peak base displacement, J4 is the peak inter-storey drift,
and J5 is the peak absolute floor acceleration. J7 and J8 are the RMS values of base
displacement and interstory drift. In all the above cases, the performance measures are
normalized by the corresponding quantities in the uncontrolled structure. Finally, J6 represents
the force generated by all control devices normalized by the peak base shear in the controlled
structure, and J9 is the total energy absorbed by all control devices normalized by the energy
input in the controlled structure.

In addition to these nine criteria, a tenth criterion J10 is included in the results for this study.
This additional criterion is equal to the maximum corner drift for the controlled structure,
normalized by the maximum for the uncontrolled case. Comparisons with J4 give an indication
of the total reduction in the twisting of the building.

4. CONTROLLER DESIGN

In this paper, two actuator configurations are considered; one with 4 actuators in each
direction (i.e. nc = 8) at corners 3; 13; 19 and 31, and the other with 8 actuators in each direction
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(i.e. nc = 16) at positions 3; 8; 13; 19; 24; 26; 31 and 45. (See [4] for these locations.) In both cases,
the maximum capacity of each actuator is 2200 kN.

Four different controllers are designed for the benchmark problem. The first two correspond
to the four-actuator case. The first one is designed to minimize the failure probability for a
particular excitation model. Mean values are adopted for the excitation filter parameters and
this case is called the ‘four-actuator nominal-model controller’ or 4NC. The second controller is
designed to minimize the total failure probability. This controller, called the ‘four-actuator
probabilistic model controller’ or 4PC, incorporates the probability models for the uncertainty
of the excitation model parameters. The third and fourth cases correspond to analogous
optimizations with the eight-actuator configuration, and will thus be referred to as the 8NC and
8PC cases.

4.1. Determination of actuator forces

As mentioned, the control input uf 2 R3 corresponds to the total forces in x- and y-directions,
and the total moment about the center of mass of the base due to all actuators. Let fc be the
vector of forces produced by each individual device. Then fc and uf are related by

uf ¼ Rcfc ð29Þ

where

Rc ¼ ½r1c . . . rncc � where ric ¼
½1 0 � yic�

T ðactuator in the x-directionÞ

½0 1 xic�
T ðactuator in the y-directionÞ

(
ð30Þ

Assuming at least three actuators simultaneously do not align with each other or with the
center of mass, Rc has rank 3. If more than three actuators are used, Rc has a nontrivial null
space, and thus Equation (29) has infinite solutions for fc, given uf. An optimum force
distribution may be derived by using the right generalized inverse of Rc. Defining this
generalized inverse as T, it is equal to

T ¼ RT
c ðRcR

T
c Þ
�1 ð31Þ

Thus, for uf as in Equation (2), one solution for fc can be related to the states as

fc ¼ TKfCf x ð32Þ

for Cf appropriately defined. This produces the minimum-Euclidean-norm fc for a given control
gain Kf.

4.2. Designation of failure surfaces

The vector y of performance quantities is expressed as in Equation (9) with appropriate
definitions for Cy and Dy. In this example, these matrices are such that y consists of:

1. The drifts for the base and all stories, measured at the outermost corners
2. The absolute accelerations of the eighth floor and the base in x and y directions
3. Three failure quantities related to the actuator forces

The first two items above can be related to the state vector x as described in the previous
section. For the structural drifts, the failure thresholds are chosen to be 1% of the storey height.
For the accelerations, the failure threshold is chosen as 0.6 g. For the base displacement, the
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threshold is 0.6m. These chosen values may be somewhat larger than typical ones which might
be used in structural design, but if smaller failure thresholds are chosen, closed-loop failures
may occur so frequently (for all controllers) that the approximations leading to Equation (12)
are unreasonable.

To explain the specification of force failure thresholds requires a more in-depth discussion.
If an actuator is commanded to realize a force beyond its maximum force rating fmax (equal
to 2200 kN in this example), a command limiter imposes a saturation on the actual force realized
by the device. Thus, the imposition of actuator failure surfaces on the control optimization
should be viewed as a means of discriminating against Kf values which have a high probability
of saturation.

Ideally, ‘actuator failure’ could be defined by nc force failure regions (i.e. one corresponding
to the x- and y-direction of each actuator) of the form

jfcij5gfmax i 2 f1; . . . ; ncg ð33Þ

Quantity g > 1 is a design parameter, that reflects the empirical observation that a small
degree of force saturation does not significantly affect the performance of the controller and that
g ¼ 1 consequently yields controllers which are overly conservative.

However, it turns out that the above approach does not adhere to necessary conditions for the
approximation in Equation (12) to be justified. This is because all nc forces in fc are related to
only three control inputs uf 2 R3; and thus are composed of only three independent random
variables. Consequently, there will be a significant correlation between the failures of the various
surfaces described above, even if these failures are highly unlikely.

One way to address this problem is through the use of singular values. Let V 2 R3�3 be the
right-hand unitary transformation matrix corresponding to the singular value decomposition of
T, and let R 2 R3�3 be the diagonal matrix of nonzero singular values. Then the isometry
||RVTuf||2 = ||fc||2 holds, as well as the inequalities

jjfcjj14jjfcjj24
ffiffiffiffiffi
nc

p
jjfcjj1

jjRVTuf jj14jjRV
Tuf jj24

ffiffiffi
3

p
jjRVTuf jj1

ð34Þ

which imply

jSiv
T
i uf j4

1ffiffiffi
3

p gfmax 8i 2 f1; 2; 3g ) jjfcjj14gfmax

jSiv
T
i uf j5

ffiffiffiffiffi
nc

p
gfmax any i 2 f1; 2; 3g ) jjfcjj15gfmax

ð35Þ

where vi is the ith column of V, and Si the corresponding singular value. Thus, the first line in
Equation (35) corresponds to a conservative failure criterion, while the second corresponds to a
liberal criterion. The design approach adopted here was therefore to prescribe three failure
surfaces that lie in between these two constraints; i.e.

jSiv
T
i uf j4agfmax a 2

1ffiffiffi
3

p ;
ffiffiffiffiffi
nc

p" #
ð36Þ

where a is a design parameter. After some trial and error, the values of a and g for this example
were chosen to be 2.3 and 1.4 for all design cases.
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4.3. Optimization procedure

The design of the controller in each case consists of the optimization of the 13 independent
parameters in Equation (27) for K (i.e. the 3� 4 matrix Kf, and parameter oc). This optimization
is implemented using the optimization toolbox of MATLAB. For better accuracy, the
optimization is performed over four successive steps, including more parameters at each step
and using the optimal results of the previous step as initial values.

For probabilistic control designs 4PC and 8PC, a final time T must be specified for the
optimization in Equation (18). A choice of T which is too large or small will result in a dramatic
reduction in the sensitivity of PðF j K;YÞ to K because the failure probabilities for all
stabilizing controllers congregate near one (for T large) or zero (for T small). This can create
numerical problems in the optimization and consequently, a reasonable choice for T must be
found through some trial-and-error. For this example, T was chosen to be 30 s.

4.4. Equivalent LQ controllers

When analyzing the efficacy of the controllers designed in this study, it is instructive to compare
their performance to an equivalent linear-quadratic optimal controller, designed under the
nominal model parameters. Such a controller can be found through the optimization of K over
the same controller spaceK; but in reference to a quadratic performance functional on y, rather
than a failure-based performance measure. To make a fair comparison, these functionals should
be somehow ‘equivalent’. Here, this is done by assuming the quadratic functional to be a
summation of the variances of the components of y, normalized by their failure thresholds b; i.e.

K�LQ ¼ arg min
K2K

Xl
i¼1

syi
bi

� �2
( )

ð37Þ

In control theory, such an optimization is often called ‘fixed-structure’ in reference to the fact
that the optimization is restricted to a fixed controller model structure. Procedures for such
optimizations are well known in the literature [17] and, in the interest of brevity, will not be
repeated here.

5. RESULTS

5.1. Failure statistics

For the 4NC, 4PC, 8NC, and 8PC controller designs, as well as the equivalent LQ controllers
(here denoted 4LQ and 8LQ), Table I shows selected performance data for the closed-loop
stationary response. It turns out that for all cases, the only failure rates which are non-negligible
are those of the base drifts and those of force failure surfaces 1 and 2 (i.e. the u failure surfaces
corresponding to the two highest singular values of T). All others are at least an order of
magnitude smaller and are not included in the table.

Consider first the four-actuator case. As expected, the 4NC case yields a lower failure rate
than the 4LQ case, with a margin of improvement of about 8%. This illustrates an underlying
observation of this study, which is that linear-quadratic controllers are not necessarily the best
controllers for failure reduction. Note that this observation is buttressed by the eight-actuator
case, where the improvement in failure rate between the 8LQ and 8NC cases is around 19%.
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Now, consider the last column in the table, labeled ‘failure probability’. These probabilities
correspond to the evaluation of Equation (14) for each controller. Note that although the NC
case improves significantly upon the LQ case for the nominal model for both four and eight
actuators, as measured by the improvement in the total failure rate, the total failure probabilities

Table II. Performance data for FP-x case (four actuators).

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

LQ 0.791 0.805 0.775 0.766 0.749 0.306 0.465 0.600 0.692 0.771
Newhall NC 0.787 0.800 0.722 0.761 0.744 0.308 0.424 0.568 0.710 0.768

PC 0.778 0.791 0.657 0.751 0.733 0.312 0.384 0.533 0.723 0.758

LQ 0.731 0.744 0.684 0.711 0.816 0.219 0.429 0.534 0.718 0.722
Slymar NC 0.742 0.756 0.654 0.690 0.820 0.216 0.428 0.540 0.732 0.698

PC 0.756 0.772 0.621 0.716 0.870 0.212 0.428 0.549 0.745 0.713

LQ 0.815 0.797 0.503 0.707 0.729 0.263 0.458 0.424 0.611 0.522
El Centro NC 0.797 0.777 0.484 0.685 0.708 0.304 0.435 0.407 0.643 0.510

PC 0.778 0.757 0.473 0.667 0.690 0.348 0.419 0.396 0.671 0.493

LQ 0.902 0.904 0.636 0.897 0.921 0.203 0.404 0.463 0.695 0.813
Rinaldi NC 0.899 0.901 0.631 0.894 0.918 0.204 0.392 0.455 0.713 0.812

PC 0.891 0.893 0.617 0.887 0.911 0.205 0.376 0.447 0.730 0.806

LQ 0.673 0.668 0.539 0.647 0.902 0.222 0.491 0.449 0.598 0.665
Kobe NC 0.677 0.672 0.497 0.639 0.895 0.245 0.452 0.419 0.612 0.661

PC 0.673 0.668 0.442 0.631 0.886 0.271 0.423 0.400 0.623 0.650

LQ 0.881 0.875 0.873 0.866 0.893 0.101 0.627 0.740 0.505 0.720
Jiji NC 0.877 0.863 0.867 0.883 0.925 0.102 0.623 0.753 0.509 0.770

PC 0.888 0.898 0.866 0.952 1.014 0.101 0.623 0.770 0.516 0.831

LQ 0.709 0.728 0.504 0.670 0.722 0.246 0.411 0.437 0.749 0.563
Erzikan NC 0.728 0.754 0.485 0.670 0.783 0.240 0.404 0.435 0.761 0.596

PC 0.754 0.786 0.460 0.698 0.809 0.231 0.388 0.435 0.776 0.612

Table I. Failure statistics for various controller designs.

Failure rates

Base displacement u-space surfaces Failure probability

Controller nx ny n1 n2 nS P½0;T �ðFÞ

8LQ 0.0093 0.0038 0.0001 0.0016 0.0148 0.657
8NC 0.0061 0.0032 0.0010 0.0016 0.0118 0.652
8PC 0.0046 0.0021 0.0074 0.0080 0.0226 0.615

4LQ 0.0195 0.0085 0.0022 0.0008 0.0310 0.695
4NC 0.0145 0.0073 0.0042 0.0026 0.0286 0.681
4PC 0.0102 0.0059 0.0101 0.0064 0.0327 0.657
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are not very different for the LQ and NC cases. This is partly because these failure probabilities
are evaluated over the entire model space, and the favorable performance achieved with one set
of model parameters may not extend to others.

Meanwhile, the PC cases do improve significantly on the total failure probability, by about
5% and 6% for the four- and eight-actuator cases, respectively. It is interesting that this is the
case, even though the failure rates for the PC cases, evaluated on the nominal model, are much
worse than those of the LQ and NC cases.

It is also worth noting the striking result that the total failure probabilities for the 4PC and
8LQ cases are the same. This emphasizes the interdependency between control law synthesis and
actuator design.

5.2. Performance in transient response

Tables II–V show the evaluation of performance variables J1–J10 for the seven earthquake
records under consideration. For each of these records, separate results are shown for the cases
with the fault parallel to the x-axis (i.e. FP-x) and parallel to the y-axis.

To distill this extensive amount of data down to a few general observations, it is instructive to
examine the failure data for each earthquake; i.e. the maximum ratios of yi/bi for each failure

Table III. Performance data for FP-y case (four actuators).

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

LQ 0.721 0.745 0.683 0.774 0.818 0.271 0.595 0.639 0.693 0.709
Newhall NC 0.713 0.737 0.631 0.745 0.795 0.297 0.547 0.599 0.711 0.688

PC 0.706 0.729 0.592 0.717 0.771 0.309 0.499 0.568 0.726 0.663

LQ 0.662 0.649 0.672 0.647 0.687 0.209 0.451 0.447 0.736 0.640
Slymar NC 0.658 0.642 0.643 0.632 0.685 0.211 0.425 0.439 0.756 0.632

PC 0.663 0.651 0.624 0.634 0.682 0.209 0.412 0.442 0.771 0.636

LQ 0.792 0.796 0.651 0.801 0.804 0.304 0.449 0.478 0.655 0.762
El Centro NC 0.783 0.786 0.630 0.792 0.794 0.330 0.428 0.475 0.678 0.768

PC 0.765 0.767 0.603 0.773 0.774 0.375 0.417 0.471 0.706 0.764

LQ 0.845 0.891 0.710 0.928 0.937 0.184 0.401 0.377 0.692 0.925
Rinaldi NC 0.839 0.885 0.701 0.921 0.931 0.202 0.378 0.358 0.711 0.921

PC 0.833 0.878 0.693 0.914 0.925 0.203 0.354 0.348 0.727 0.914

LQ 0.842 0.843 0.578 0.862 0.865 0.229 0.524 0.576 0.565 0.823
Kobe NC 0.839 0.838 0.570 0.852 0.857 0.242 0.496 0.563 0.581 0.823

PC 0.836 0.834 0.559 0.848 0.851 0.265 0.468 0.553 0.595 0.812

LQ 0.776 0.767 0.893 0.732 0.741 0.101 0.671 0.632 0.500 0.777
Jiji NC 0.774 0.760 0.888 0.751 0.790 0.101 0.668 0.644 0.512 0.784

PC 0.775 0.782 0.885 0.804 0.851 0.101 0.667 0.661 0.522 0.849

LQ 0.660 0.661 0.576 0.678 0.698 0.230 0.472 0.399 0.725 0.602
Erzikan NC 0.656 0.658 0.551 0.686 0.709 0.232 0.441 0.382 0.749 0.596

PC 0.664 0.675 0.540 0.728 0.779 0.229 0.425 0.377 0.767 0.638
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criterion. Because the performance variables Ji in the tables are all normalized by the
uncontrolled values for the structure, these ratios are difficult to determine from the data.
Rather than present a battery of additional tables, trends for these ratios can be easily seen from
Figure 3, which shows scatter plots for the data. Plots (a) and (b) are for the four-actuator case,
while plots (c) and (d) are for the eight-actuator case. Plot (a) shows the maximum normalized
quantities for inter-storey drifts vs base drifts, while plot (b) shows the maximum normalized
quantities for accelerations vs forces fc (i.e. the maximum over all actuator forces divided by
fmax). Note that the accelerations and inter-storey drifts stay well below their failure thresholds
for all simulations. (Although not explicitly treated as a form of failure, the shear levels of the
simulations are also well within safe limits.) It is therefore clear that this benchmark problem
essentially distills down to a trade-off between base drift and actuator force.

Now, we return to the data in the tables. Note that J3 represents the maximum base drift,
normalized by the uncontrolled value, and J6 represents the maximum actuator force,
normalized by the total base shear for the controlled structure. From the scatter plots in Figure
3, these two performance measures represent the essential trade-off between different
controllers. However, because J6 is normalized by the total base shear of the controlled
structure, it cannot be used to directly compare maximum force levels.

Table IV. Performance data for FP-x case (eight actuators).

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

LQ 0.774 0.787 0.601 0.747 0.729 0.382 0.349 0.517 0.735 0.754
Newhall NC 0.756 0.767 0.595 0.725 0.707 0.439 0.355 0.507 0.751 0.735

PC 0.719 0.728 0.593 0.682 0.666 0.536 0.376 0.490 0.760 0.701

LQ 0.735 0.742 0.640 0.708 0.810 0.357 0.382 0.517 0.768 0.730
Slymar NC 0.696 0.698 0.591 0.640 0.763 0.415 0.354 0.475 0.791 0.659

PC 0.619 0.613 0.593 0.561 0.693 0.490 0.327 0.412 0.805 0.573

LQ 0.776 0.754 0.449 0.661 0.685 0.354 0.391 0.396 0.699 0.493
El Centro NC 0.703 0.679 0.416 0.589 0.616 0.474 0.347 0.357 0.730 0.448

PC 0.608 0.582 0.395 0.506 0.535 0.648 0.329 0.321 0.746 0.383

LQ 0.885 0.888 0.618 0.882 0.906 0.289 0.373 0.464 0.746 0.802
Rinaldi NC 0.867 0.870 0.600 0.866 0.891 0.323 0.340 0.422 0.766 0.792

PC 0.826 0.830 0.586 0.829 0.856 0.402 0.299 0.390 0.776 0.766

LQ 0.642 0.636 0.419 0.631 0.858 0.319 0.383 0.397 0.643 0.653
Kobe NC 0.630 0.624 0.410 0.610 0.860 0.373 0.329 0.386 0.660 0.632

PC 0.560 0.554 0.409 0.596 0.843 0.494 0.296 0.380 0.679 0.599

LQ 0.828 0.836 0.905 0.881 0.937 0.216 0.589 0.664 0.622 0.772
Jiji NC 0.827 0.836 0.934 0.892 0.951 0.216 0.629 0.658 0.609 0.778

PC 0.804 0.816 0.980 0.882 0.945 0.222 0.666 0.658 0.587 0.771

LQ 0.716 0.739 0.461 0.713 0.728 0.381 0.363 0.405 0.798 0.567
Erzikan NC 0.681 0.704 0.435 0.703 0.720 0.440 0.334 0.376 0.811 0.548

PC 0.601 0.615 0.384 0.630 0.656 0.528 0.292 0.325 0.823 0.485
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Consider first the cases corresponding to four actuators. For every earthquake in Tables II
and III, the NC and PC controllers incrementally improve upon J3 in comparison with the LQ
case. Meanwhile, the trend in J6 is less clear. Also note that the high values associated with the
Jiji record are due to heavy force saturation for these cases. Consequently, there does not appear
to be a lot of difference between the different controllers for this earthquake, in the sense that
they all perform poorly due to a deficiency in the necessary force level.

Consider now the case with eight actuators; i.e. Tables IV and V. For these cases, results for
J3 are similar, except that all values are lower. This is due to the fact that the total force
capability is now twice what it was for the four-actuator case. The trend in incremental
improvement for the LQ, NC, and PC controllers remains. The exception to this is the Jiji
earthquake, where again force saturation produces abnormal results, with the LQ controller
actually out-performing the others. It is interesting that in comparison to the four-actuator case,
the J3 values for Jiji are actually higher, even though the force capability has been doubled.
Compared with using four actuators, there is also a more consistent behavior for J6 for the
eight-actuator case, with incremental increases between the LQ, NC, and PC cases.

It is not clear that there is a significant incremental benefit between using four and
eight actuators. Of course, the base drift is noticeably lower for the eight-actuator case, but

Table V. Performance data for FP-y case (eight actuators).

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

LQ 0.711 0.735 0.590 0.732 0.785 0.314 0.463 0.561 0.731 0.678
Newhall NC 0.685 0.708 0.575 0.665 0.733 0.409 0.458 0.536 0.748 0.629

PC 0.639 0.660 0.561 0.589 0.674 0.555 0.457 0.514 0.764 0.559

LQ 0.671 0.653 0.626 0.638 0.686 0.292 0.408 0.442 0.779 0.636
Slymar NC 0.626 0.605 0.569 0.600 0.679 0.366 0.349 0.387 0.806 0.625

PC 0.543 0.528 0.570 0.582 0.662 0.475 0.308 0.318 0.819 0.606

LQ 0.735 0.736 0.569 0.743 0.742 0.428 0.371 0.463 0.730 0.767
El Centro NC 0.711 0.712 0.552 0.722 0.720 0.469 0.366 0.447 0.748 0.739

PC 0.642 0.643 0.528 0.654 0.650 0.583 0.376 0.412 0.765 0.674

LQ 0.837 0.882 0.695 0.918 0.929 0.260 0.349 0.353 0.746 0.919
Rinaldi NC 0.809 0.853 0.680 0.890 0.905 0.308 0.320 0.319 0.762 0.896

PC 0.761 0.802 0.665 0.844 0.864 0.412 0.301 0.287 0.771 0.848

LQ 0.827 0.824 0.541 0.836 0.840 0.306 0.422 0.544 0.611 0.807
Kobe NC 0.753 0.746 0.523 0.754 0.768 0.343 0.388 0.533 0.639 0.752

PC 0.649 0.638 0.509 0.652 0.680 0.505 0.363 0.527 0.670 0.659

LQ 0.719 0.717 0.867 0.710 0.717 0.218 0.579 0.550 0.632 0.741
Jiji NC 0.726 0.731 0.913 0.747 0.776 0.216 0.597 0.557 0.638 0.797

PC 0.720 0.719 0.968 0.765 0.814 0.217 0.629 0.562 0.625 0.822

LQ 0.668 0.671 0.536 0.700 0.721 0.320 0.406 0.371 0.780 0.609
Erzikan NC 0.604 0.615 0.476 0.641 0.659 0.412 0.341 0.314 0.804 0.571

PC 0.523 0.524 0.427 0.555 0.580 0.524 0.307 0.257 0.809 0.504
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it is a matter of debate as to whether this marginal improvement justifies the expense of
doubling the actuator force capability. It is also an interesting to compare J3 in the 4PC and
8LQ cases, as was done in the previous subsection. In half the simulations, the PC case with four
actuators either performs comparable with, or out-performs, the LQ controller with eight
actuators. This further illustrates the interrelation between control optimization and actuator
design.

A comparison between J10 (maximum normalized inter-storey corner drift) and J4 (maximum
drift of the center of mass) gives some indication of the degree to which twisting has been
suppressed in the structure by the control. Although results are mixed, an underlying
observation can be made. For the four-actuator case, J4 and J10 are usually very close for the PC
case (discounting the heavily saturated Jiji responses), implying that the controller suppresses
the twisting and the lateral drift by roughly the same amount. However, for the eight-actuator
case, the response data is less consistent; sometimes J10 is well below J4, while other times it is
much greater.
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Figure 3. Scatter plots of normalized failure quantities for four actuators (a,b) and eight actuators (c,d)
for the 14 ground motion cases.
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In this paper, the performance for the PC case is compared against a fixed-structure LQ
controller using the same optimization weights, and it is believed that this comparison presents
the clearest interpretation of the relationship between probabilistic controllers and linear
quadratic ones. However, the results presented here can also be compared with those obtained
with the LQG active controller presented in the part II of the problem definition [18], which uses
the same eight-actuator configuration used in this paper. Discounting the Jiji record, the values
of J1–J5, J7, and J8 are at least 10% lower for the results presented here, even for the four-
actuator case, and are significantly lower for the eight-actuator case. The remaining metrics (i.e.
J6 and J9), which are related to force magnitude, are significantly higher, but still below unity for
all records. Thus, the controller in [18] simply strikes a different balance between forces and
structural reliability.

6. CONCLUSIONS

In this paper, a reliability-based active control synthesis method has been described, and has
been applied to the benchmark base isolation structural control problem. The intent of this
paper has been to demonstrate the concept of reliability-based control in the context of a
practical civil engineering problem, and to illustrate the potential value of this control approach.
Simulation results imply that this method does indeed yield superior reliability, relative to a
comparable LQ controller.

There are clearly many theoretical questions concerning these methods which are not
addressed by this paper, and here we suggest only four of the most obvious as items requiring
further study. First, as discussed in Section 2, failure criteria must be assigned in such a manner
that the correlation between them is low, and this requires more formality than has been
presented here. Second, the nonconvexity of failure probability with respect to control
parameters presents challenges for the global optimization of these controllers. Third, the
optimal-reliability controllers studied in this paper were optimized over a fixed controller
domainK; and an interesting question concerns the dependency of the optimal reliability on the
controller class chosen. Finally, there are clearly unanswered questions regarding the robustness
of optimal-reliability active controllers based on linear dynamics, in the presence of
nonlinearities such as saturation. Significant further research is necessary to address these issues.
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