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Structural Model Updating and Health Monitoring
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Abstract: A new Bayesian model updating approach
is presented for linear structural models. It is based on
the Gibbs sampler, a stochastic simulation method that
decomposes the uncertain model parameters into three
groups, so that the direct sampling from any one group is
possible when conditional on the other groups and the in-
complete modal data. This means that even if the number
of uncertain parameters is large, the effective dimen-
sion for the Gibbs sampler is always three and so
high-dimensional parameter spaces that are fatal to most
sampling techniques are handled by the method, making
it more practical for health monitoring of real structures.
The approach also inherits the advantages of Bayesian
techniques: it not only updates the optimal estimate of
the structural parameters but also updates the associ-
ated uncertainties. The approach is illustrated by ap-
plying it to two examples of structural health monitor-
ing problems, in which the goal is to detect and quan-
tify any damage using incomplete modal data obtained
from small-amplitude vibrations measured before and
after a severe loading event, such as an earthquake or
explosion.
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1 INTRODUCTION

Model updating refers to the methodology that de-
termines the most plausible structural model for an
instrumented structural system given its measured
response and, possibly, its excitation. In recent years,
civil engineers have paid much attention to model
updating techniques as they have broad applications
in structural health monitoring (Natke and Yao, 1988;
Hjelmstad and Shin, 1997; Lam et al., 1998; Beck et al.,
2001; Chang, 2001; Sohn et al., 2001; Bernal et al., 2002;
Casciati, 2002). Among the structural model updating
techniques, Bayesian model updating techniques (Beck
and Katafygiotis, 1998; Vanik et al., 2000; Yuen et al.,
2004; Ching and Beck, 2004) do not just find a single
plausible structural model but a set of structural models
whose predictions are weighted by the probabilities of
those models conditional on the measured data. Due
to their ability to consider more than one structural
model, Bayesian model updating techniques are robust
and are suitable to characterize modeling uncertainties
of structural systems.

In terms of structural health monitoring, linear struc-
tural models are often used for model updating (Vanik
et al., 2000; Sohn and Law, 2001; Caicedo et al., 2004).
For instance, much vibration data of structures under in-
vestigation are obtained using low-amplitude excitation,
e.g., ambient vibration and hammer impact, under which
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many structures (even damaged structures) behave ap-
proximately linearly. In this case, the usual approach is to
first identify modal parameters from vibration data, up-
date the stiffnesses of the structural model based on the
identified modal data and detect damage locations by
comparing the updated stiffness distribution with that
from the baseline undamaged structure. Local loss of
stiffness in the structural model is taken to indicate dam-
age at the corresponding location in the real structure.

Even with linear models, the problem of model up-
dating with modal data is potentially ill-posed, i.e., there
may be more than one optimal model (Katafygiotis and
Beck, 1998). The problem becomes even more challeng-
ing when only some of the degrees of freedom (DOF)
of the model are measured and when modeling errors
are explicitly acknowledged. A previous Bayesian struc-
tural model updating approach (Beck and Katafygiotis,
1998) has been successful in resolving the aforemen-
tioned difficulties when the amount of modal data is
sufficiently large so that an asymptotic approximation
of the Bayesian predictive integrals is accurate.

However, when the amount of data is smaller, the
accuracy of the asymptotic approximation is question-
able. Beck and Au (2002) proposed a stochastic simula-
tion approach for these cases that is based on a Markov
chain Monte Carlo algorithm (Metropolis-Hastings) that
also addresses the aforementioned difficulties. Their ap-
proach does not use an asymptotic approximation and
the results can be made arbitrarily accurate with increas-
ing number of samples. However, a major limitation is
that it is only efficient for lower-dimensional problems.

In this article, a new approach is presented for
Bayesian model updating of linear structural models
with incomplete modal data that is based on the Gibbs
sampler (GS) (Geman and Geman, 1984; Gelfand et al.,
1990), a special case of Markov chain Monte Carlo sim-
ulation. This approach also does not use any asymptotic
approximation and the results can be made arbitrarily
accurate with sufficient samples. The most attractive as-
pect of this new approach is that it is applicable to linear
Bayesian model updating problems of arbitrarily high
dimensions.

The basic idea of the GS approach presented here is
to decompose the uncertain model parameters of the
linear structural model into three groups so that exact
sampling of one group of parameters is possible when
conditional on the other groups and the modal data.
The dimension of the uncertain model parameters is
then not an issue because the effective dimension is al-
ways three. It is shown that the new approach works for
globally identifiable and unidentifiable cases with high-
dimensional uncertain model parameters. Moreover, the
GS approach also estimates the complete mode shapes as
well as prediction-error variances. However, it is found

that it may not work for locally identifiable cases. The
reader is referred to Beck and Katafygiotis (1998) for
detailed definitions of globally and locally identifiable,
and unidentifiable, problems; one can view these three
cases as corresponding, respectively, to a unique maxi-
mum likelihood estimate (MLE), multiple but isolated
MLEs and a manifold (i.e., continuum) of MLEs in the
parameter space.

An obvious application of this new approach is
Bayesian model updating for structural health monitor-
ing with low-amplitude vibration data, such as acceler-
ation data generated by ambient vibrations or hammer
impacts before and after a severe loading event (e.g.,
earthquake or explosion) to identify possible damage, in-
cluding its location and severity. Many structures behave
approximately linearly under these weak vibrations, so
the linearity assumption of the approach will be justified.
Moreover, the GS approach is robust to the dimension
of uncertain model parameters, so it may be applied to
real structures.

The outline of the article is as follows: First, the
Bayesian linear structural model updating problem is
defined and the class of linear structural models is in-
troduced. Second, the GS approach is introduced. An
index that is useful for damage localization and quantifi-
cation is then presented. The effectiveness of the new ap-
proach is then demonstrated using two structural health
monitoring examples: a 2-DOF shear building and the
IASC-ASCE Structural Health Monitoring Simulated
Benchmark Phase II data. Computational issues for the
GS approach are also addressed in the Appendix. Finally,
the article concludes with a discussion of the advantages
and disadvantages of the GS approach.

2 BAYESIAN LINEAR STRUCTURAL
MODEL UPDATING

In this section, a Bayesian procedure is described for
updating structural models based on incomplete modal
data. It is assumed for the structure under consideration
that Ns sets of experimental modal data have been
obtained from the structure for Nm dominant modes of
vibration using a reliable modal identification technique
such as MODE-ID (Beck, 1996; Yuen et al., 2004).
The incomplete modal data to be utilized consists of the
modal frequencies and mode shape components at
the measured DOF for each identified mode (identified
modal damping ratios are not used in the damage
assessment). The modal data are denoted by
D̂≡ {ω̂r, j , ψ̂r, j : r = 1, . . . , Nm, j = 1, . . . , Ns}, where ω̂r, j

and ψ̂r, j ∈ RNO (NO is the number of measured DOF)
are the experimental modal frequency and vector of
observed mode-shape components for the rth mode in



244 Ching, Muto & Beck

the jth modal data set, respectively. The experimental
mode shapes are normalized so that their Euclidean
norm ‖ψ̂r, j‖2 = 1.

2.1 Linear structural identification model

To define the identification model class MM, a set of linear
structural models with the mass matrix M and stiffness
matrix K parameterized in an affine manner is defined
as follows:

M(ρ) = M0 +
NM∑
i=1

ρi Mi K(θ) = K0 +
NK∑
i=1

θi Ki (1)

where Nd ≥ NO is the number of DOF of the identifica-
tion model; Mi ∈ RNd×Nd and Ki ∈ RNd×Nd are the pre-
scribed nominal contributions of the ith substructure to
the global mass and stiffness matrices, and the uncertain
parameters ρi and θi scale these contributions and are
to be updated. Classical normal modes are assumed and
thus the damping matrix need not be explicitly modeled
because it does not change the eigenvectors specified by
the mass and stiffness matrices.

2.1.1 System mode shapes. In the usual situation where
the full DOF corresponding to the identification model
are not measured, “system mode shapes” (Beck et al.,
2001) may be introduced as extra parameters to be
updated. These mode-shape components are not con-
strained to be eigenvectors of the structural model and
are introduced to represent the actual underlying mode
shapes of the system. The connection between the exper-
imental modal data and the model parameters becomes

K(θ)φr = ω̂2
r, j M(ρ)φr + εr, j ψ̂r, j = �φr + er, j (2)

where φr ∈ RNd is the system mode-shape vector of
the rth mode; � is the matrix that picks the measured
DOF from the system mode shape φr , εr, j ∈ RNd , and
er, j ∈ RNO are prediction-error vectors and are modeled
as independent Gaussian variables, which can be justified
by the maximum differential entropy principle (Jaynes,
1957), that is, the Gaussian probability density function
(PDF) gives the largest uncertainty (or least amount of
information in the sense of Shannon) for any PDF of
unbounded support with specified means and variances,

εr, j ∼ N
(
0, σ 2

r I
)

er, j ∼ N
(
0, δ2

r I
)

(3)

so that the means of the prediction-error vectors are
zero and their covariance matrices are scaled versions
of the identity matrix I of appropriate order. For nota-
tional simplicity, the vector of Nm system mode shapes
is denoted by φ = [ φT

1 φT
2 φT

3 · · · φT
Nm

]T , the structural

parameters by λ = [ θT ρT ]T ∈ RNλ , and the prediction-

error variances by σ 2 = [ σ 2
1 σ 2

2 σ 2
3 · · · σ 2

Nm
]T and δ2 =

[ δ2
1 δ2

2 δ2
3 · · · δ2

Nm
]T . Furthermore, the symbol MM for the

identification model class will be omitted even though all
the PDFs are obviously conditional on the choice of MM.
Note that (2) and (3) define the PDF p(D̂ | λ, φ, σ 2, δ2).

The system mode shapes φ can be regarded as a bridge
connecting the identification problem with full mode
shape information to the one with partial mode shape
information. There are, however, several other advan-
tages to expanding the identification model class MM by
introducing the system mode shapes:

1. Because of the constraints of the assumed mathe-
matical structure built into MM, it might not be possi-
ble for any structural model in this class to produce
theoretical mode shapes that will give a good match
to the experimental mode shapes. The system mode
shapes provide extra flexibility in this aspect.

2. Their introduction also turns out to remove any
need to match experimental and model modes dur-
ing the identification, thereby avoiding a common
difficulty in applications.

In the Bayesian framework, all model parameters in
the linear structural model, including mass, stiffness, and
system mode shapes, are updated. Prior PDFs are spec-
ified for the model parameters to reflect the relative
plausibilities of their values in the absence of any mea-
surement data. The goal of the Bayesian model updating
technique is to construct an updated (posterior) PDF for
the parameters using the prior PDFs and the experimen-
tal modal data.

2.1.2 Selection of prior PDF. The prior PDF for λ and
φ is taken to be the product of independent Gaussian
PDFs where

λ ∼ N(λ0, P0) φ ∼ N(φ0, Q0) (4)

and where λ0 and φ0 are the chosen most probable values
of λ and φ, respectively, and P0 and Q0 are the chosen
variances to express the initial uncertainty in these pa-
rameters. The variance parameters {δ2

r : r = 1, . . . , Nm}
are directly estimated from the sample variance of the
experimental mode shape data,

δ̂2
r =

⎛⎝ Ns∑
j=1

∥∥∥∥∥ψ̂r, j −
(

Ns∑
m=1

ψ̂r,m

/
Ns

)∥∥∥∥∥
2

2

⎞⎠/
(Ns No) (5)

where‖·‖2 stands for the Euclidean norm. The prior PDF
for σ 2 ≡ {σ 2

r : r = 1, . . . , Nm} is taken to be the product
of independent inverse gamma PDFs, IG(αr , βr ),
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p
(
σ 2

r

) ∼ IG(αr , βr ) ∝ (
1
/
σ 2

r

)αr −1
e−(βr /σ

2
r ) (6)

When αr = βr = 0, the inverse gamma prior becomes the
usual Jeffreys’ non-informative prior, i.e., p(σ 2

r ) ∼ 1/σ 2
r .

These choices of the prior PDFs (Gaussian and inverse
gamma) facilitate the use of the GS. In fact, these prior
PDFs are the Bayesian conjugate priors (Gelman et al.,
1995) for the mean and variance of a Gaussian PDF and
their use enables us to do exact sampling with the GS
algorithm.

3 GIBBS SAMPLER

From the structural health monitoring point of view, our
goal is to compute p(θ | D̂), the PDF of the stiffness pa-
rameters after it is updated by including the information
from the modal data D̂. Note that p(θ | D̂) is the marginal
PDF obtained from the PDF p(λ, φ, σ 2 | D̂) by integrat-
ing out ρ, φ, and σ 2. The latter PDF is given by Bayes’
Theorem,

p(λ, φ, σ 2 | D̂)

= p(λ)p(φ)p(σ 2)p(D̂ | λ, φ, σ 2)∫
p(λ)p(φ)p(σ 2)p(D̂ | λ, φ, σ 2) dλ dφ dσ 2

(7)

where all PDFs on the right-hand side of this equation
have already been specified.

Unfortunately, it is not feasible to compute p(λ,

φ, σ 2 | D̂) analytically, nor numerically, because the
integral in the denominator in (7) is difficult to evaluate
due to the high dimensionality of {λ, φ, σ 2}. Therefore,
our strategy is to sample from p(λ, φ, σ 2 | D̂) so that
the θ components of these samples are distributed as
p(θ | D̂). Any quantity of interest regarding θ , such as
the sample mean and variance of θ conditional on D̂,
can be estimated using the samples. Difficulties arise
because direct sampling from p(λ, φ, σ 2 | D̂) is not
feasible, so the GS algorithm (Geman and Geman,
1984; Gelfand et al., 1990) is used.

3.1 Gibbs sampler algorithm

1. Initialize the samples with {λ̂(0), φ̂(0), σ̂ 2(0)} drawn
from the prior PDFs and let k = 1.

2. a. Sample the system mode shapes φ̂(k) ∼
p(φ | λ̂(k−1), σ̂ 2(k−1), D̂).

b. Sample the prediction-error variances σ̂ 2(k) ∼
p(σ 2 | λ̂(k−1), φ̂(k), D̂).

c. Sample the structural parameters λ̂(k) ∼
p(λ | σ̂ 2(k), φ̂(k), D̂).

3. Let k = k + 1, go back to Step 2 and cycle un-
til N samples {λ̂(k), φ̂(k), σ̂ 2(k) : k = 1, . . . , N} are
obtained.

Therefore, the basic idea of the GS is to decompose the
uncertain model parameters {λ, φ, σ 2} into three groups,
i.e., λ, φ, and σ 2. With the choices of the conjugate priors,
exact sampling from one parameter group conditional
on the other groups and the modal data can be achieved.
Thus, although the dimension of {λ, φ, σ 2} is huge, the
effective dimension is always three. The GS is a special
case of Markov Chain Monte Carlo methods; however,
unlike the common Markov Chain Monte Carlo meth-
ods, the GS never rejects samples.

When k gets large, the Markov chain samples
{λ̂(k), φ̂(k), σ̂ 2(k)} are distributed as p(λ, φ, σ 2 | D̂), assum-
ing that the Markov chain created by the GS is ergodic
(Gelman et al., 1995). According to our experience,
when the regions of high values of p(λ, φ, σ 2 | D̂) are
effectively connected, the Markov chain samples are dis-
tributed as p(λ, φ, σ 2 | D̂) when k is large no matter how
the GS algorithm is initialized, i.e., an ergodic Markov
chain is obtained. Globally identifiable and unidenti-
fiable cases (Beck and Katafygiotis, 1998) are of this
kind. Therefore, it is postulated that the proposed GS
approach is useful for globally identifiable and unidenti-
fiable problems. For locally identifiable problems (Beck
and Katafygiotis, 1998), the samples obtained using a sin-
gle GS run may get trapped in the neighborhood of only
one of the optimal models.

3.2 Burn-in period and convergence diagnosis

The Markov chain samples obtained from the GS are
distributed as the target PDF when the Markov chain
reaches its stationary state. The time period required for
the Markov chain to reach its stationary state is called the
burn-in period. Usually, a burn-in period is determined
by visual inspection by plotting the Markov chain sam-
ples through time and identifying the transient period.
The Markov chain samples within the burn-in period are
discarded because they are not distributed as the target
PDF.

The Markov chain samples after the burn-in period
are collected, and the quantities of interest can be esti-
mated using these samples. However, there is a question
of when to stop the GS so that the obtained Markov
chain samples well represent the target PDF. This ques-
tion arises because the Markov chain samples are de-
pendent. There are several available convergence diag-
nosis criteria that can be used to determine if the Markov
chain samples are enough (e.g., the Gelman-Rubin con-
vergence statistic; Gelman and Rubin, 1992). In this ar-
ticle, the following simple method of determining the
convergence is chosen: the convergence of the estimates
of the quantities of interest is visually inspected and the
GS stops if the convergence appears to be reached.
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3.3 Full conditional PDF

To implement the GS, the full conditional PDFs, i.e.,
p(λ | σ̂ 2, φ̂, D̂), p(φ | λ̂, σ̂ 2, D̂), and p(σ 2 | λ̂, φ̂, D̂), need
to be derived. These full conditional PDFs are also
Gaussian and inverse gamma because conjugate pri-
ors are adopted so that they are readily sampled. First,
p(φ | λ̂, σ̂ 2, D̂) and p(λ | σ̂ 2, φ̂, D̂) are Gaussian. More
specifically, with λ and σ 2 fixed, (2) can be written in
the following form:

Ŷ = AX + E (8)

where Aand Ŷ are a fixed matrix and vector depending
on the fixed λ and the modal data; E is the prediction er-
ror, distributed as N(0, �), where � is a fixed covariance
matrix depending on the fixed σ 2; the prior PDF of X is
N(X0, �0). For the current discussion, X is identical to
φ so X0 = φ0 and �0 = Q0. According to Gelfand et al.
(1990)

E(X | Ŷ) = X0 + �0 AT(A�0 AT + �)−1(Ŷ − AX0)

Cov(X | Ŷ) = �0 − �0 AT(A�0 AT + �)−1 A�0 (9)

where E(X | Ŷ) and Cov(X | Ŷ) are, for the current dis-
cussion, exactly the first two moments of the Gaus-
sian PDF p(φ | λ̂, σ̂ 2, D̂). The first two moments of
p(λ | σ̂ 2, φ̂, D̂) can be obtained in a similar manner.

On the other hand, p(σ 2 | λ̂, φ̂, D̂) is inverse gamma
(Gelfand et al., 1990):

p
(
σ 2

r

∣∣ λ̂, φ̂, D̂
)

= IG
(

αr + Nd Ns

2
, βr + 1

2

Ns∑
j=1

∥∥K̂φ̂r − ω̂2
r, j M̂φ̂r

∥∥2

2

)
(10)

Some computational issues that may occur when imple-
menting the GS approach are discussed in the Appendix.

4 EVALUATION OF DAMAGE PROBABILITY

For the purpose of structural health monitoring, it is es-
sential to locate possible damage and provide an index
indicating the severity of the damage. This is achieved
by estimating the probability that any stiffness param-
eter has decreased more than a fraction d. Note that
the GS samples {λ̂(k), φ̂(k), σ̂ 2(k) : k = 1, . . . , N} will ul-
timately be distributed as p(λ, φ, σ 2 | D̂). This implies
that the extracted stiffness samples {θ̂ (k) : k = 1, . . . , N}
are ultimately distributed as p(θ | D̂). With the θ sam-
ples conditional on the modal data obtained from an
undamaged state (D̂ud) and a possible damaged state of
a structure (D̂pd), the probability that the damage frac-
tion in the ith stiffness parameter exceeds threshold d
can be estimated using the following approximation:

P
(
θ

pd
i < (1 − d)θud

i

∣∣ D̂ud, D̂pd
)

≈ 1

M

M∑
n=1

I
[
θ̂

pd
i,n < (1 − d)θ̂ud

i,n

]
(11)

where I[.] is the indicator function, which is unity if

the condition is satisfied, otherwise it is zero; θ
pd
i and

θud
i are the ith stiffness parameters in a possibly dam-

aged state and undamaged state, respectively; θ̂
pd
i,n and

θ̂ud
i,n are the nth samples independently resampled from

the Markov chain samples of p(θ | D̂pd) and p(θ | D̂ud),
respectively. Such resampling is conducted M times (i.e.,
n = 1, . . . , M), where M is a large integer.

5 EXAMPLES

5.1 Simulated 2-DOF linear shear building

The first example is a 2-DOF linear shear building in
which the lumped masses of the two floors are equal and
the ratio of each inter-story stiffness to the mass is 2,000
in appropriate units. The building is subject to simulated
white-noise ambient excitation at each degree of free-
dom, and the measured response of the structure, which
is equal to the actual acceleration plus 10% root-mean-
square (RMS) noise, is simulated before and after dam-
age. The goal of this example is to use the GS approach to
locate and quantify the damage given the measured re-
sponse and the structural model.

Damage is simulated by reducing the column stiffness.
There are two damage cases: the damage for the first and
second cases is a 30% reduction of the inter-story stiff-
ness of the first and second stories, respectively. For the
undamaged case and the two damaged cases, 110 sec-
onds of ambient-vibration acceleration data at the two
floors are generated using an implicit time-integration
method.

5.1.1 Modal identification. Ten sets of modal data are
extracted from the acceleration data using a modal iden-
tification procedure called MODE-ID (Beck, 1996), so
NS = 10 (the 110 seconds of data are divided into 10 seg-
ments with the first 10 seconds neglected). The method
assumes a linear model with classical normal modes of
vibration. In the case where the excitation is unknown
(e.g., ambient vibration), it is modeled as a weakly sta-
tionary stochastic process where the current excitation
is assumed to be uncorrelated from the past response. It
can be shown that the cross-correlation functions of the
model responses then satisfy the original equation of
motion for the structure in free vibration where the time
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Table 1
Mean modal data for the 2-DOF shear building example

Frequency (Hz)

Mode 1 Mode 2

Undamaged 4.37 11.59

COV (%) 6.41 3.88

30% 1st-story damage 3.95 11.05

COV (%) 5.32 2.90

30% 2nd-story damage 4.24 10.53

COV (%) 4.95 3.70

lag serves as a pseudo-time (Beck et al., 1994). The iden-
tified modal parameters from these pseudo-free vibra-
tion data are the modal frequencies, damping ratios, and
mode shape components at the measured DOFs. Table 1
shows the average values and the coefficients of vari-
ation (COV) of the identified modal frequencies. Mode
shapes are also identified using MODE-ID although they
are not shown.

5.1.2 Identification model. The structural model used
for the GS is a 2-DOF linear shear building model,
where the uncertain parameters are {ρ1, ρ2}, {θ1, θ2},
{φ1, φ2}, and {σ1, σ2} (see (1) and (2)). The variances
{δ2

1, δ
2
2} are directly estimated from the experimental

mode shapes identified by MODE-ID. The number of

Fig. 1. Markov chain samples for the stiffness parameters of the undamaged case in the (a) globally identifiable and (b)

unidentifiable cases. The index n denotes the time step of the Markov chain. The dashed line indicates the end of the burn-in

period at n = 50 (not visible for the unidentifiable cases because of scale).

uncertain parameters is therefore 10 because the sys-
tem mode shapes each have two components. The prior
PDFs of {ρ1, ρ2} are chosen to be independent Gaussian
PDFs with means equal to 1 and COV equal to 10%.
Those of {θ1, θ2} are independent Gaussian PDFs with
means equal to 1 and COV equal to 30%. Flat indepen-
dent prior PDFs are taken for {φ1, φ2}, and independent
inverse gamma prior PDFs with large COV (100%) are
taken for {σ 2

1 , σ 2
2 }. It is found that the GS results are in-

sensitive to the means of the inverse gamma prior PDFs
as their COV are large.

5.1.3 Results from the Gibbs sampler. Following the GS
procedure, Markov chain samples of the masses, stiff-
nesses, system mode shapes, etc. are obtained. The ini-
tial point for the Markov chain is generated from the
prior PDFs of the uncertain parameters. Figure 1a shows
the Markov chain samples of {θ1, θ2} for the undamaged
case, which shows that the Markov chain seems to reach
its stationary state very quickly, i.e., the burn-in period
is less than 50 time steps. In Figure 2a, all the samples
for the undamaged case are plotted, excluding those in
the burn-in period, in the {θ1, θ2} space. The results show
that the model is globally identifiable (GID).

Also of interest are the GS results when fewer modal
data are available. Figure 1b shows the Markov chain
samples of θ1 and θ2 for the undamaged case when only
the roof acceleration is measured and also only the modal
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Fig. 2. Stiffness parameter samples plotted in the {θ1, θ2} space for the (a) GID undamaged, (b) GID 30% 1st story damage, (c)

GID 30% 2nd story damage, (d) UID undamaged, (e) UID 30% 1st story damage, and (f) UID 30% 2nd story damage cases.

data from the first mode are available. The burn-in period
is roughly 50 time steps. Similarly, Figure 2d plots all the
samples for the undamaged case in the {θ1, θ2} space. It is
clear that the samples spread out in the {θ1, θ2} space. In
fact, the 2-DOF model is unidentifiable (UID), showing
there is insufficient information provided when only the
first mode data from acceleration measurements at the
roof is available.

Figures 2b and c show the Markov chain samples in
the {θ1, θ2} space for the first and second damaged cases
when the full set of the modal data are available (GID
case), Figures 2e and f show the samples for the two
damaged cases when only first mode data from the roof
accelerations is available (UID case), which again show
that the samples spread out in the {θ1, θ2} space.

Figures 3 and 4 show the probability that the dam-
age fractions of the two stiffness parameters exceeds the
threshold d for the two damaged cases, as estimated using
(11). It is clear that the results of damage detection are re-
liable when the full set of modal data are available (GID
case) but not so when only the roof acceleration and the
first mode data are available (UID case). The GID mean
damage fraction for the first and second story damage
states are 30% and 22%, respectively, compared to the
actual damage fraction of 30% for both damage states.
However, in the unidentifiable case, damage to the first
story is detected with an estimated mean damage frac-
tion of 20%, but damage to the second story is detected

as damage to the first story with a mean damage fraction
of less than 10%. This is because it is not possible to accu-
rately localize the damage without mode shape informa-
tion. Performance is better for the first story damage case
because the first natural frequency is much more sensi-
tive to the first story stiffness, so the difference between
the damaged and undamaged states is greater than for
the second story damage case. It is found that the con-
vergence of the estimates of the probability of damage is
fast for the GID cases (1,000 Markov chain samples are
sufficient, as more samples do not improve the results),
although for the UID cases, it requires more than 10,000
samples for convergence, as indicated by the results in
Figures 3 and 4.

5.2 IASC-ASCE Phase II Simulated
Benchmark studies

For the second example, the GS approach is applied
to the connection-damage cases in the IASC-ASCE
Phase II Simulated Structural Health Monitoring Bench-
mark problems (Bernal et al., 2002). In the benchmark
problems, data are generated by a finite-element struc-
tural model with 120 DOF, which is referred to as the
benchmark model and is shown in Figure 5. It is a 3D
four-story 2-bay by 2-bay unbraced model structure. The
y-direction is the strong direction of the columns, the
base is fixed, and the floors are rigid in plane. The nomi-
nal mass from the first to the fourth story is 3,242, 2,652,



Structural model updating and health monitoring 249

Fig. 3. Estimated damage probability curves for 30% 1st story damage for the GID and UID cases. The curves for the UID case

are calculated using 1,000, 10,000, 15,000, 25,000, and 50,000 samples (samples before burn-in are discarded). The curve for the

GID case is calculated using 1,000 samples.

2,652, and 1,809 kg. The nominal properties of the beams
and columns are listed in Table 2. Actual masses are
modeled by randomly selecting all floor mass from a uni-
form distribution over [0.9, 1.1] of the nominal value; the
center of the floor mass deviates from the geometrical
floor center by randomly selecting a factor from a uni-
form distribution over [−0.05, 0.05] of the floor width.

Fig. 4. Estimated damage probability curves for 30% 2nd story damage for the GID and UID cases. The curve for the GID case is

calculated using 1,000 samples.

These random factors in the benchmark model that are
used to generate the simulated test data are unknown to
investigators.

The connection-damage cases in the Phase II Bench-
mark problems involve detection and assessment of sim-
ulated beam-column connection damage with different
severities and at different locations in the benchmark
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( a ) ( b ) 

Z 

Y (Strong) 
X (Weak)

Fig. 5. The diagram of the benchmark structure, showing damage locations for (a) DP 1 and (b) DP 2. The circles indicate

connections with reduced rotational stiffness.

model. The damage is simulated by reducing the stiff-
nesses of the undamaged (Undmg) finite-element model
at the ends of some beams, that is, the stiffnesses of some
rotational springs whose axes in the x-direction are re-
duced so that the model becomes more flexible in the
strong y-direction. There are two damage patterns: (1)
DP1: complete loss of rotational stiffness at six first-story
beam-column connections and four second-story beam-
column connections, as shown in Figure 5a; (2) DP2:
complete loss of rotational stiffness at four first-story
beam-column connections, as shown in Figure 5b. The
connection damage cases are the most challenging in the
simulated benchmark study, as the rotational DOF are
not directly observed.

The simulated ambient-vibration data for all cases are
generated by simulated wind forces consisting of broad-
band stationary excitation of the model at each floor;
this excitation is unknown to the investigator. The data
can be downloaded from the ASCE benchmark website
(Dyke, 2001). Acceleration measurements are available

Table 2
The properties of the structural elements in the analytical model (Johnson et al., 2004)

Property Columns Floor Beams

Section type B100 × 9 S75 × 11

Cross-sectional area A (m2) 1.133 × 10−3 1.43 × 10−3

Moment of inertia (strong direction) I1 (m4) 1.97 × 10−6 1.22 × 10−6

Moment of inertia (weak direction) I2 (m4) 0.664 × 10−6 0.249 × 10−6

St. Venant torsion constant J (m4) 8.01 × 10−9 38.2 × 10−9

Young’s Modulus E (Pa) 2 × 1011 2 × 1011

Mass per unit length ρ (kg/m) 8.89 11.0

at the center of each side at each floor with the directions
parallel to the side in either the positive x- or y-direction
(see Figure 5).

Time histories with a sampling interval of 0.002 sec-
onds and total duration of 210 seconds are generated for
all damaged and undamaged cases. They are partitioned
temporally into 10 sets (Ns = 10) of equal duration
of 20 seconds (ignoring the first 10 seconds) to yield
10 sets of independent estimates of the modal data for
each case. The first 10 seconds are ignored as it contains
non-stationary transient responses. When generating the
time histories, damping ratios are taken to be equal to
1% for all modes and simulated measurement noise is
added equal to 10% RMS of the actual acceleration at
the measured DOF.

5.2.1 Modal identification. Eight modes (Nm = 8), four
in the strong (y) direction and four in the weak (x)
direction, of the structure are identified using MODE-ID
for all cases. Table 3 shows the average value of the modal



Structural model updating and health monitoring 251

Table 3
Modal data for the ASCE Benchmark example

Frequency (Hz)

(W1) (S1) (W2) (S2) (W3) (S3) (W4) (S4)

Undmg 3.19 3.98 9.79 13.41 16.66 25.15 23.72 39.28

COV (%) 1.72 0.33 0.46 0.29 1.08 0.34 0.37 0.20

DP1 3.20 3.42 9.78 12.91 16.69 24.68 23.72 39.11

COV (%) 2.45 0.91 0.60 0.57 0.41 0.39 0.38 0.30

DP2 3.19 3.79 9.79 13.13 16.72 25.15 23.72 39.17

COV (%) 2.02 0.57 0.53 0.58 0.45 0.30 0.38 0.28

∗∗“W” and “S” denote “weak” and “strong” directions.

frequencies identified from the 10 sets of time histories.
The corresponding COV are shown in percent in these
tables. The modal frequencies in the weak direction are
expected to be unchanged because the damage patterns
weaken only the strong direction. The 16 acceleration
measurements, four on each face of the structure, are
used to identify the Euclidean-normalized mode shape
components at the “+x” “−x” “+y” “−y” faces of the
structure, which are plotted in Figure 6 for the undam-
aged case. Here, “+x” “−x” “+y” “−y” represent the
directions of the outward normal of the faces. In these
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Fig. 6. The experimental mode shape components of the structure for the undamaged case. “W” and “S” denote “weak” and

“strong” directions.

plots, the identified mode shape components are joined
by straight-line segments.

5.2.2 Identification model. A 3-D 36-DOF model that
assumes rigid floors in the x–y plane and allows rotation
along the x- and y-axes is proposed. Each floor is assumed
to be rigid in plane, that is, with respect to rotation along
the z-axis and for x- and y-direction translations, giving
three of the nine DOF for each story. Nodes in each floor
are allowed to rotate along the x- and y-axes in a con-
strained way: nodes with the same x-coordinates or same
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y-coordinates are assumed to have the same amount of
rotation along the y-axis and x-axis, respectively, to give
the remaining six DOF for each floor. Translation along
the z-direction is not allowed in this model.

Two parameters are used for the rotational stiffness
in each floor: it is assumed that the rotational stiffness
of all beam-column connections in the same floor along
the x-axis (or along the y-axis) is identical. This assump-
tion is imposed as the mode shape data (e.g., Figure 6)
indicate that the mode shape components in the x and y
directions are mostly decoupled; therefore, in practice it
is unlikely that the face sustaining the damage can be dis-
tinguished. The rotational stiffnesses with rotation axes
along the x-axis and y-axis are called the strong and weak
direction rotational stiffnesses, respectively. Besides the
rotational stiffness, four parameters are used for the col-
umn stiffnesses, one for each story, to give 12 stiffness
parameters in total:

K(θ) =
∑

i

θc,i K̄c,i +
∑

i

∑
j

θi j K̄i j (12)

where i = 1, . . . , 4, j = ′x′,′y′, and the indices i and j
denote the story number and the axis along which the ro-
tational stiffness is active, respectively; K̄i j are the nom-
inal rotational stiffness matrices computed based on the
model assumptions for the original undamaged struc-
ture; K̄c,i is the nominal stiffness matrix contributed by
the columns in the ith story. It follows that under this
model, damage pattern DP1 corresponds to 2/3 loss of
θ1y and 1/3 loss of θ2y, and DP2 corresponds to 1/3 loss
of θ1y.

Due to the fact that the stiffness matrix of the bench-
mark structure is dominated by the columns and the fact
that the columns also provide rotational stiffness, slight
errors in the identified column stiffness parameter will
significantly influence the values of the identified rota-
tional stiffness parameters. This indicates that to reliably
detect and assess rotational stiffness damage, sufficient
prior information about the column stiffness is needed.
Therefore, the prior PDF on the column stiffness pa-
rameter is taken to be independent Gaussian with mean
and COV equal to 1% and 2%. The prior PDF of the
eight rotational stiffness parameters is taken to be in-
dependent Gaussian with mean and COV equal to 1%
and 20%. These choices would be reasonable for a real
structure where there is likely to be a strong belief that
structural damage will occur in the connections and not
in the columns themselves.

In calculating the nominal story masses, the mass of the
columns is lumped at the floors that they are connected
to. One mass parameter is used for each story to give
four mass parameters:

M(ρ) =
∑

i

ρi M̄i (13)

where i = 1, . . . , 4 represents the story number and the
M̄i are the nominal mass matrices computed based on
the original undamaged structure. The prior PDF for the
uncertain mass parameters is assumed to be independent
Gaussian with mean equal to unity and COV equal to
1%. This means that the mass will not vary much from
its most probable (nominal) value.

5.2.3 Results from the Gibbs sampler. Following the GS
procedure, Markov chain samples of the masses, stiff-
nesses, system mode shapes, etc. are obtained. The to-
tal number of uncertain parameters is 312. To exam-
ine whether the Markov chain created by the GS is er-
godic or not, five parallel GSs are conducted to obtain
five independent Markov chains. The initial point for
each Markov chain is generated from the prior PDFs
of the uncertain parameters. It is found that all the
five Markov chains converge to the same region in the
parameter space, suggesting that the Markov chain is
ergodic.

Figure 7 shows the samples of the eight rotational stiff-
nesses for the undamaged case from one of the parallel
Markov chains. The Markov chain seems to reach its sta-
tionary state after a burn-in period of 1,000 time steps.
For the two damaged cases, the results are similar ex-
cept that the sample mean of the rotational stiffnesses
may be different. In Figure 8, the kernel PDFs of the
rotational stiffnesses built by the Markov chain samples
(excluding the 1,000 in the burn-in period) are plotted
for the Undmg, DP1, and DP2 cases. It is clear that the
damage of the strong direction rotational stiffnesses in
the first and second stories is correctly detected for the
DP1 case, and the damage in the first story is also cor-
rectly detected for the DP2 case. Moreover, the amount
of the identified stiffness loss is roughly correct, i.e., for
the most probable values, there is about 55% loss in θ1y

and 40% loss in θ2y for DP1 and 30% loss in θ1y for DP2.
Figures 9 and 10 show the sample mean of the system
mode shapes for the three cases, which shows that the
identified mode shapes do not change after the connec-
tion damage except for slight changes in the rotational
components of the mode shapes in the strong direction,
the damaged direction.

Figures 11 and 12 show the probability that the dam-
age fractions of the eight rotational stiffness parameters
exceed threshold d for the two damaged cases, as esti-
mated using (11) with samples from one Markov chain
for each case (Undmg., DP1, DP2). It is found that 4,000
samples are sufficient for convergence. As seen from
the figures, all the actual damage locations are correctly
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Fig. 7. Markov chain samples for the rotational stiffness parameters in the undamaged case. The index n denotes the time step of

the Markov chain. The dashed line indicates the end of the burn-in period at n = 1,000.

detected (i.e., in the first and second stories in the strong
direction for the DP1 case and the first story only for
the DP2 case). For each of the undamaged locations, the
median loss of rotational stiffness never exceeds about
3%.

Fig. 8. Kernel probability densities built from the rotational stiffness parameter samples from five parallel Markov chains with

5,000 samples each.

6 CONCLUSION AND DISCUSSION

A GS approach for linear Bayesian structural model
updating has been presented. The results from the two
examples show that the GS approach is effective in
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Fig. 9. Translational degrees of freedom for the mean system mode shapes (first four modes in each direction and for the three

damage cases).

detecting and locating damage in an instrumented struc-
ture by using small-amplitude vibration data from before
and after a severe loading event, as long as there are suf-
ficient sensors so that the model is globally identifiable.
The major advantage of the GS approach is that its ef-

Fig. 10. Rotational degrees of freedom of the mean system mode shapes (first four modes in each direction and for the three

damage cases). The average values of the three rotational mode shape components at each floor and in each direction are shown

in this figure.

ficiency does not degrade with an increasing number of
uncertain parameters in the structural model. This prop-
erty is rare among the most common stochastic simula-
tion approaches, e.g., importance sampling, Metropolis-
Hasting, rejection sampling, etc. Therefore, in principle,
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Fig. 11. Damage probability curves for DP1, using 1,000, 2,000, 3,000, and 4,000 post burn-in samples.

the GS approach may be applied to the health monitor-
ing of real structures with high-dimensional uncertain
parameters.

There are no false damage detections in the usual
strict sense, only in a soft probabilistic sense, i.e., there
is a significant probability of substantial damage (say,

Fig. 12. Damage probability curves for DP2, using 1,000, 2,000, 3,000, and 4,000 post burn-in samples.

more than 10% stiffness reduction) for some locations
where there is no damage (but these probabilities are
less than 0.5, so the inference of substantial damage
is more likely to be not true). These situations mostly
occur in the unidentifiable cases, which are the cases
where there are not enough sensor measurements, so
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it is due to an inherent lack of information rather than a
deficiency of the method. Similar comments can be made
about missed damage detections, which occur only in a
soft probabilistic sense and only for the unidentifiable
cases (see Figures 3 and 4).

The GS approach is not effective for locally identifi-
able cases, where the regions of high values of the poste-
rior PDF are well separated. To the authors’ knowledge,
all stochastic simulation approaches suitable for locally
identifiable cases, such as importance sampling and the
Markov chain Monte Carlo approach developed by Beck
and Au (2002), are not efficient for problems with high-
dimensional uncertain parameters. It remains an open
research subject to sample a high-dimensional PDF with
well-separated support regions. It is noted, though, that
locally identifiable cases will be relatively rare in prac-
tice compared with globally identifiable, or unidentifi-
able, cases where the sensor data either provide more,
or less, independent information than needed to con-
strain the updated parameter values (Katafygiotis and
Beck, 1998).
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APPENDIX—COMPUTATIONAL ISSUES

In the GS algorithm, to sample p(φ | λ̂, σ̂ 2, D̂) and
p(λ | σ̂ 2, φ̂, D̂), their first two moments are needed,
which, in turn, requires matrix inversion (see (9) for
the term (A�0 AT + �)−1). The size of this matrix
is Ns Nm(No + Nd) × Ns Nm(No + Nd) for p(φ | λ̂, σ̂ 2, D̂)
and Ns NmNd × Ns NmNd for p(λ | σ̂ 2, φ̂, D̂) so the inver-
sion of these matrices is computationally expensive. A
sequential way of computing the first two moments of
p(φ | λ̂, σ̂ 2, D̂) and p(λ | σ̂ 2, φ̂, D̂) is proposed without
the need to invert these huge matrices, which will be
explained using p(λ | σ̂ 2, φ̂, D̂) as an example. The first
equation in (2) can be written as

Ŷr, j = Ar, jλ + εr, j (A.1)

where

Ŷr, j = K0φ̂r − ω̂2
r, j M0φ̂r ∈ RNd

Ar, j = [−K1φ̂r · · · −KnK φ̂r ω̂2
r, j M1φ̂r · · · ω̂2

r, j MnM φ̂r
]

∈ RNd×nλ (A.2)

It follows that p(λ | σ̂ 2, φ̂, D̂) = p(λ | σ̂ 2, {D̂r, j : r = 1, . . . ,

Nm, j = 1, . . . , Ns}), where D̂r, j ≡ {Ŷr, j , Ar, j }. In-
stead of conditioning on {D̂r, j : r = 1, . . . , Nm, j =
1, . . . , Ns} all together, first condition on D̂1,1 to obtain

p(λ | σ̂ 2, D̂1,1) by computing its first two moments
E(λ | σ̂ 2, D̂1,1) and Cov(λ | σ̂ 2, D̂1,1), which are readily
computed using (9). During the computation, an
Nd × Nd matrix inversion is required. Second, obtain
p(λ | σ̂ 2, D̂1,1, D̂1,2) by calculating its first two moments,

E
(
λ

∣∣ σ̂ 2, D̂1,1, D̂1,2

)
= E

(
λ

∣∣ σ̂ 2, D̂1,1

) + Cov
(
λ

∣∣ σ̂ 2, D̂1,1

)
AT

1,2

× [
A1,2Cov

(
λ

∣∣ σ̂ 2, D̂1,1

)
AT

1,2 + σ̂ 2
1 I

]−1

× [
Ŷ1,2 − A1,2E

(
λ

∣∣ σ̂ 2, D̂1,1

)]
× Cov

(
λ

∣∣ σ̂ 2, D̂1,1, D̂1,2

)
= Cov

(
λ

∣∣ σ̂ 2, D̂1,1

) − Cov
(
λ

∣∣ σ̂ 2, D̂1,1)AT
1,2

× [
A1,2Cov

(
λ

∣∣ σ̂ 2, D̂1,1

)
AT

1,2 + σ̂ 2
1 I

]−1

× A1,2Cov
(
λ

∣∣ σ̂ 2, D̂1,1

) (A.3)

Note that in (A.3), only an Nd × Nd matrix inversion
is needed. The sequential procedure continues for
p(λ | σ̂ 2, D̂1,1, D̂1,2, D̂1,3), p(λ | σ̂ 2, D̂1,1, D̂1,2, D̂1,3, D̂1,4). . .
until p(λ | σ̂ 2, φ̂, D̂) is reached. For p(φ | λ̂, σ̂ 2, D̂), the
same sequential method is used but the size of the
matrix inversion is now (No + Nd) × (No + Nd).


