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Overview of Robust Stochastic 
System Analysis

1.1: Stochastic System Modeling
Class(es) of probabilistic input-output models for system to 
address uncertainties in system modeling (robust analysis)
Terminology: ‘System’= real thing; ‘Model’=idealized 
mathematical model of system

1.2: Prior System Analysis
Uncertainties in system input also addressed
Reliability analysis to compute failure probabilities

1.3: Posterior System Analysis
Bayesian updating of models in class based on system data
Updated reliability analysis



1.1: Stochastic System Modeling
Predictive model: Gives probabilistic input-output 
relation for system depending on model parameters:
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Usually have a set of possible predictive probability  
models to represent system:

Nominal prior predictive model: Select single 
model, e.g. most plausible model in set

But there is uncertainty in which model gives most 
accurate predictions that should not be ignored
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Stochastic System Modeling (Continued)



Robust prior predictive model: 
Select               to quantify the plausibility of each 

model in set, then from Total Probability Theorem:

Here,     denotes the class of probability models, i.e. it 
specifies the functional forms of                  &  

More about choosing             , the prior PDF, later

Stochastic System Modeling (Continued)
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Stochastic System Model: Example 1
Complete system input known: Define 
deterministic input-output model                for 
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Model for prediction-error time history gives 
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Can take prediction errors as zero-mean Gaussian & 
independent in time (maximum entropy distribution),     
so is Gaussian with mean               and 
covariance matrix   

),( θnn Uq
)(θΣ

Uncertain
Output

nY



Stochastic System Model: Example 2
Complete system input not known:  Define 
state-space dynamic model for system by:
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Probability models for missing information (i.e. initial 
state     and time histories of unknown input     and 
prediction error     ), define

0x nw
nv

Uncertain

Uncertain state:

Uncertain output:



First-Excursion Problem: Analysis Model
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Total Input Uncertainty: Choose probability model             
over set of possible system inputs: 
Nominal prior predictive analysis: Find the probability 
that system output lies in specified set     using nominal 
model:

Reliability problem corresponds to           defining ‘failure’ 
(= specified unacceptable performance of system)
Primary computational tools for complex dynamical  
systems are advanced stochastic simulation methods (more 
later) and Rice’s out-crossing theory for simpler systems
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1.2: Prior System Analysis
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Robust prior predictive analysis:

Robust reliability if          defines failure
Primary computational tools: 

Stochastic simulation, e.g. importance sampling with 
ISD at peak(s) of integrand (needs optimization)
Asymptotic approximation w.r.t. curvature of the 
peak(s) of integrand (needs optimization)

Huge differences possible between nominal and robust 
failure probabilities

Prior System Analysis (Continued)

( | ,  ) ( | , ) ( |  )n nP Y F P Y F p dθ θ θ∈ = ∈∫U M U M
nY F∈



Asymptotic approximation introduced in:
Papadimitriou, Beck and  Katafygiotis (1997). “Asymptotic expansions 
for reliability and moments of uncertain systems.” (at website)
Au, Papadimitriou and Beck (1999). “Reliability of Uncertain Dynamical 
Systems with Multiple Design Points” (at website)

Comparisons between nominal and robust failure 
probabilities available in:

Papadimitriou, Beck & Katafygiotis (2001). “Updating Robust Reliability 
using Structural Test Data.” (at website)

Prior System Analysis (Continued)



Available System Data:
Update by Bayes Theorem:

Optimal posterior predictive model:
Select most plausible model in class based on data,
i.e.      that maximizes the posterior PDF (if unique)

Optimal posterior predictive analysis:

Difficulties: Non-convex multi-dimensional optimization (‘parameter 
estimation’); ignores model uncertainty
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1.3: Posterior System Analysis
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Robust posterior predictive model: 
Use all predictive models in class weighted by their updated probability 
(exact solution based on probability axioms):

Robust posterior predictive analysis:

Primary computational tools are MCMC simulation methods and 
asymptotic approximation w.r.t. sample size N

Posterior System Analysis (Continued)
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Asymptotic approximation for large N for robust 
posterior predictive analysis
(Beck & Katafygiotis 1998; Papadimitriou, Beck & Katafygiotis 2001 
- both at website)

Assumes system is identifiable based on the data, i.e. finite number 
of MPVs that locally maximize posterior PDF, so need 
to do optimization; uses Laplace’s method for asymptotic 
approximation (see later)

Posterior System Analysis (Continued)
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Posterior System Analysis (Continued)
The weights       are proportional to the volume under 
the peak of the posterior PDF at     and sum to unity 
(see Beck & Katafygiotis 1998)

Globally identifiable case (K=1) justifies using MPV      
for posterior predictive model when there is large 
amounts of data:

Gives a rigorous justification for doing predictions 
with MPV model (or MLE, since     is insensitive to 
choice of prior)
Error in approximation is 

kw
kθ̂

θ̂

)ˆ,|(),|( θnnnn UYpUYp ≈M,DN

)/1( NO

θ̂



Posterior System Analysis (Continued)

Unidentifiable case corresponds to a continuum of MPVs lying on a 
lower dimensional manifold  in the parameter space

Interest in this case is driven by finite-element model updating
Asymptotic approximation for posterior predictive model for large 
amount of data is an integral over this manifold – feasible if it is 
low dimension (<4?) (Katafygiotis and Lam  (2002); 
Papadimitriou, Beck and Katafygiotis (2001) - both at website)
All MPV models give similar predictions at observed DOFs but 
may be quite different at unobserved DOFs



Posterior System Analysis (Continued)

Stochastic Simulation approaches:
Very challenging because most of probability content of posterior 
PDF is concentrated in a small volume of parameter space (IS 
does not work)
But potential of avoiding difficult non-convex multi-dimensional 
optimization and handling unidentifiable case in higher 
dimensions
Markov Chain Monte Carlo simulation (e.g. Metropolis-Hastings 
algorithm) shows promise (more later)



Comments

The framework and computational tools give a 
powerful approach to stochastic system analysis and 
yet it is not widely used in engineering – why not?
Obstacle: many people are comfortable with 

but not with             because they 
interpret probability as the relative frequency of 
inherently random events in the long run
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Comments

The two main themes for the remaining lectures:
Development of probability logic which gives a 
rigorous framework in which probabilities of 
models makes sense
Development of a set of computational tools to 
provide efficient algorithms for handling the high-
dimensional algorithms needed for prior and 
posterior stochastic predictive system analysis



Probability Logic
Primarily due to:

R.T. Cox  1946, 1961: The Algebra of Probable Inference

E.T. Jaynes 1983, 2003: Probability Theory – The Logic 
of Science

Major contributors to development of ideas: 
T. Bayes 1763: An essay towards solving a problem in the 

doctrine of chances
P.S. Laplace 1812: Analytical Theory of Probability

H. Jeffreys 1931: Scientific Inference 

1939: Theory of Probability



Quote from James Clerk Maxwell (1850):
The actual science of logic is conversant at present 
only with things either certain, impossible or entirely 
doubtful, none of which (fortunately) we have to 
reason on. Therefore the true logic of this world is 
the calculus of probabilities, which takes account of 
the magnitude of the probability which is, or ought to 
be, in a reasonable man’s mind.



Introduction
Features of Probability Logic

Probability logic is a quantitative approach to plausible 
reasoning when available information is incomplete; it 
generalizes binary Boolean logic
Framework based on probability axioms and no other ad-
hoc criteria or concepts
Uses Cox-Jaynes interpretation of probability as quantifying 
plausibility of statements conditional on specified 
information
Probability models are used to stand in for missing 
information; they are (lack of) knowledge models



Introduction (Continued)

Features of Probability Logic
Careful tracking of all conditioning information since all 
probabilities are conditional on probability models and other 
specified information
Meaningful to talk about probability of probability models, an 
essential aspect of Bayesian analysis
Involves integrations over high-dimensional input and model 
parameter spaces; computational tools for this will be given 
and are also being actively developed by many researchers
Framework is general but our focus is primarily on dynamical 
systems



Information 
Processing

[Axioms for Calculus
of Probability]

System Models and
Probability Models
[Knowledge models

for missing information]

Decision Making
[Predicted Decision

Variables]

Decision Making under Uncertainty/Incomplete 
Information (e.g. Engineering System Design)

Information processing should be done in such a way that known 
information is not lost and spurious information is not added




